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Abstract 

 
True time is the time indicated by the position of the sun (i.e., on a sundial). It is 

different than mean time, the time indicated by a clock. True time is not perfectly regular 

and can differ from mean time by up to a quarter of an hour in either direction. In the 

present paper, we carefully study the relationship between these different times. In 

particular, we see that the ancient astronomers calibrated mean time differently than now, 

and the difference between their two times varied from 0 to about 31 minutes. This 

distinction allows us to clarify the following unsolved problems: 

 

1. The epoch of Maimonides – the moment at which all the astronomical parameters 

are specified – was never known with precision. In this article, we establish this 

moment with precision.  We show that this moment is twenty minutes after 

apparent sunset, at the beginning of the night, when three stars of medium size 

become visible to mark the end of the Sabbath in Jerusalem.  

 

2. We explain the meaning of an obscure paragraph, at the end of Chapter 29 of Al-

Battani, related to the “problem of the inequality of the days and the equation of 

time.”  

 

3. We explain and justify the epoch of Savasorda (R’ Abraham bar Hiya ha-Nassi). 

 

4. Finally, we show that the molad – the Jewish mean conjunction – which is 

generally supposed to be expressed in Jerusalem mean time is actually expressed 

in ancient Ptolemy mean time. 
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I. The Equation of Time 

 

Today, we are accustomed to the uniform time of our watches (mean time), and it 

is difficult to understand the concept of true time. In ancient times, it was just the 

opposite, as people were so accustomed to the true time (or apparent time), which is the 

time indicated by a sundial, that it was difficult to understand and to use the mean time.
1
 

Until the end of the eighteenth century, the official time was the true time.
2
 It was only 

then that England and the Republic of Geneva officially put mean time into use,
3
 and 

only in the beginning of the nineteenth century the mean time of Paris became the legal 

time in France.
4
 This change was necessitated by the increasing use of watches of ever 

better precision,
5
 but the change was not easy to implement. Indeed, in the eighteenth 

century, true time regulated civil life and it was common to transform the results of 

astronomical calculations into true time. 

 

To explain the difference between mean time and true time, we define a day’s 

length as the time between two consecutive upper or lower passages of the sun
6
 at the 

meridian. An important achievement of Greek astronomy was the discovery of the 

variation of the length of days. Today, the length of a day is 24 hours on February 11, on 

May 15, on July 27, and on November 4; but it exceeds 24 hours by 13 seconds on June 

20, by 29.9 seconds on December 23, and it is less than 24 hours by 18.4 seconds on 

March 28 and by 21.4 seconds on September 17. These differences seem negligible, but 

in the course of the year, these insignificant differences accumulate and become 

significant. 

 

For example, if we consider the time span of 100 days beginning on November 4 

(when the true longitude of the sun is about 320°) and ending on February 11 (when the 

true longitude of the sun is about 210°), the total time exceeds the length of 100 mean 

days by 30 min 41sec
7
 and therefore represents 2400h 30m 41s in total. The inverse is 

also possible. If we consider the time span of 265 days beginning on February 12 and 

ending on November 3, it is 265 mean days minus 30m 41s and therefore represents 

6359h 29m 19s in total. These two examples represent the extreme cases. Ptolemy had 

already observed that this maximum difference between true days and mean days of 30m 

41s is only important for determining the moon’s longitude. During this time span of 30m 

41s, there is a variation of 18’=0.3° of the moon’s longitude. The effect on the sun’s 

longitude is only 1’=0.017° and is therefore insignificant. Therefore, ancient astronomers 

accounted for this phenomenon only for the calculation of the moon’s coordinates. 

                                                 
*
 I would like to thank engineer Yakov Loewinger of Tel Aviv for his careful reading of the draft of this 

paper, for his valuable comments, and for the references Petersen and von Dalen, which were unknown to 

me. I want also to thank my daughter-in-law, Jeanne Fromer, editor of the Harvard Law Review (2000-

2002), who corrected the English language and improved the presentation of this paper. 



 4 

 

II. The Equation of Time in Modern Astronomy 

 

The modern definitions of the mean time and of the equation of time are based on 

the Astronomical Dissertation “De Inaequalitate Dierum Solarium”,
8 

published in 1672 in 

London by Flamsteed.
9 

 Astronomers quickly accepted his conclusions,
10

 and the rest of 

society did so only much later, after more than a century. Flamsteed calls the difference 

between mean time and true time “time prosthaphaeresis” or “equation of time,” in which 

the words “prosthaphaeresis” and “equation” mean “correction”. Before Flamsteed, 

astronomers used the expression “Aequatio dierum” (translated as “the equation of the 

days”),
11

 signifying the correction between the span of true and mean days. 

 

To define the concept of mean time, consider two fictitious mobiles (suns): 

 

1. The ecliptic mean sun or the mean position of the sun. It is the same mean sun as the 

one from the Almagest, Al-Battani, and Maimonides. Today, it is called the fictitious sun. 

It moves on the ecliptic at the mean solar velocity of 360° per tropical year, and it 

coincides with the true sun at the perigee (currently January 3) and at the apogee 

(currently July 4). 

 

2. The equatorial mean sun (also called the mean sun today), which moves uniformly on 

the equator at the same mean angular velocity as the ecliptic mean sun.  

 

Both of these mean suns – the mean ecliptic sun and the equatorial mean sun – 

coincide at the equinoctial points, which are the vernal and the autumnal points. At each 

moment, the right ascension m of the equatorial mean sun is equal to the longitude l of 

the ecliptic mean sun: m l. Only four times a year, both the ecliptic and the equatorial 

mean suns have the same right ascension at the moment of the passage of the ecliptic 

mean sun through the equinoxes and through the solstices.  

 

Today, the beginning of the mean solar day is at the inferior passage of the 

equatorial mean sun at the meridian (midnight). The mean time Tm is the hour angle of 

the equatorial mean sun Hm + 12h. Until 1925, the astronomical day began at noon (in the 

middle of the civil day, at the upper passage at the meridian) and the astronomical mean 

time tm was then the hour angle of the equatorial mean sun Hm, expressed in hours. 

Therefore, the equation of time is the difference E= Tm – T = tm – t, where tm is the mean 

time, t is the true time, Tm=tm + 12h and T=t + 12h. 

 

We know that the sidereal time Ts (the hour angle of the vernal point) has the 

following property:  Ts = + t = m+ tm. Therefore:  E= tm – t =m..   is the right 

ascension of the sun (x-coordinate measured on the equator from the vernal point), and 

m is the right ascension of the equatorial mean sun. 

 

Smart (1931) defines the equation of time as Es = t – tm = −E, and his definition is 

now the standard one used in English papers. 
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Therefore, we have the equation:  −Es = E = tm – t =m l = C +
where: 

 

C = L – l. C is the equation of the center (or in ancient 

astronomy, the quota of the anomaly), which is the 

difference between the true sun and the ecliptic mean sun. 

L is the true longitude of the sun and l is the longitude of 

the mean sun (or the mean longitude of the sun). C 

accounts for the sun not moving uniformly on the ecliptic.                                               

 

= L.  is the reduction to the equator. It accounts for 

the sun moving on the ecliptic, while time is measured 

along the equator, so that even if the sun moved uniformly 

on the ecliptic, true time would not be uniform. L is the true 

longitude and l is the mean longitude. 

 

Ultimately, −Es = E = − l = (− L) + (L – l) =  + C. In modern astronomy, E is 

calculated as a function of l, the mean longitude of the sun.
12

 By contrast, ancient 

astronomers calculated E as a function of L in a common table with the calculation of the 

right ascension.
13

 
 

On February 11, Es = −14m 25s. At true noon, it is 12h 14m 25s. 

On May 15,  Es =    3m 47s.  At true noon, it is 11h 56m 13s. 

On July 27,  Es=    −6m 20s. At true noon, it is 12h 06m 20s. 

On November 4, Es =  16m 22s.  At true noon, it is 11h 44m 38s. 

             

III. The Equation of Time in Ancient Astronomy 

 

Modern people no longer know “true time” in their practical lives. They only use 

their watches, and they have little direct contact with nature. They do not know the time 

of daily sunrise and sunset, and they certainly do not know the time of daily moonrise 

and moonset. By contrast, ancient people knew only the local true time and they did not 

have the notion of uniform, or mean, time, unless they used astronomical tables. 

  

The Greeks had already recognized the two causes for the non-uniformity of true 

time: 

 

1. In the ecliptic, the movement of the sun is non-uniform. 

2. Even if the sun moved uniformly in the ecliptic, the true time would not be uniform 

because equal arcs in the ecliptic do not correspond to equal arcs in the equator.
14

 

 

Modern astronomy makes it possible to know the mean time and the corresponding 

true time at any moment. Therefore, it is possible to convert the true time as read on a 

sundial to the mean time one would read on a watch. Ancient astronomers did not have 

this problem because they did not use the concept of mean time. 
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Ancient astronomers, however, faced another problem. At a certain moment of the 

day, they wanted to calculate the moon’s coordinates. Generally, this moment was 

calculated in the units of temporary hours. They performed a first operation, which is 

beyond the scope of this paper, to transform the time expressed in temporary hours into a 

time expressed in equal, or equinoctial, hours.
15

 

 

After this first operation, they would have a certain moment of day and would want to 

find the corresponding moment in the astronomical tables of the Almagest. As we already 

know, the length of a true day is never different from the length of a mean day by more 

than 30s, so we can neglect the fraction of day and think in whole days. The problem is 

then the following: we have a certain time span expressed in true days that we want to 

express in mean days. The radices (fundamental parameters at the epoch) are listed at the 

head of Ptolemy’s tables, which give the variation of these parameters for different time 

spans. In other words, the beginning of all of the considered time spans is always the 

epoch. Nevertheless, Ptolemy explains the problem generally speaking without taking 

into account the fact that the beginning of the time span is usually the epoch. 

 

As a first step, we calculate the true and the mean position of the sun at both 

extremities of the considered time span, ignoring the difference between the true and 

mean times.
16 

 Then, we calculate the right ascension of the arc of ecliptic included 

between the two true positions of the sun (the projection of the arc of ecliptic on the 

equator, from the Northern Pole). This arc of the equator measures the interval of time 

expressed in true time. We then calculate the length of the arc of ecliptic included 

between the two mean positions of the sun; this arc measures the interval of time 

expressed in mean time. The difference between the arc of ecliptic and the arc of right 

ascension corresponds to m T, the difference between the time span expressed in 

mean time and the time span expressed in true time. 

 

If this difference is positive (E>0), it must be added to the original time span 

expressed in true time to express it in mean time. If the difference between the arc of 

ecliptic and the arc of right ascension is negative (E<0), the difference must be subtracted 

from the original time span expressed in true time to express it in mean time. 

 

The expression E = Tm – T now becomes E Tm T = m = l, and 

therefore E = E – E0 = l = (0) – (l – l0) or according to the formulation of 

Smart: EsEsEs0ll – l0) – (ll0



he letters with subscript 0 correspond to the beginning of the time span and those 

without subscripts correspond to the end of the time span. These formulas demonstrate 

the procedure of Ptolemy and show that we can easily obtain the result of Ptolemy’s 

calculation by calculating the modern equation of time at the extremities of the time span 

and their difference is E. 

 

For the spans of time beginning when the true longitude of the sun is L= 315° (the 

middle of Aquarius),
17 

the correction from true time to mean time is always subtractive, 
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and this negative correction is maximal when the longitude of the sun at the end of the 

time span is L= 210° (end of Libra). This correction is then, according to Ptolemy, 8.33 

time-degrees or 33m 20s.
18

 For the spans of time beginning when the true longitude of 

the sun is L=210°, at the beginning of Scorpio, the correction from true time to mean time 

is always additive, and its maximal value is reached when the longitude of the sun at the 

end of the time span is L=315°,
19

 in the middle of Aquarius and the correction is again 

33m 20s. 

 

In the Almagest, the epoch is Toth 1 of year 1 of the era of Nabonassar: February 

27, 747 B.C.E. or 02/27/-746 at noon.
20

 At this epoch, the longitude of the apogee is 

65°:30’, the mean longitude of the sun is 330°:45’,
21

 and the true longitude of the sun is 

333°:08’. Note that L0 is very close to the middle of Aquarius, so that almost all the spans 

of time beginning at the epoch will give a negative correction from true time to mean 

time. 

 

In the Handy tables, a set of tables written by Ptolemy, the epoch is Toth 1 of year 

1 of the era of Philippus at noon: November 12, 324 B.C.E. or 11/12/-323.
22

 At this 

epoch, the longitude of the apogee is still 65°:30’, the longitude of the mean sun is 

227°:40’,
23

 and the true longitude of the sun is 226°:44’. At this point, we are near the 

beginning of Scorpio and nearly all the spans of time beginning at the epoch will give an 

additive correction from true time to mean time. In the Handy Tables, there is a table of 

the equation of time, giving, without any calculation, the correction for the spans of time 

beginning at the epoch, considered at the beginning of Scorpio and ending at a moment 

corresponding to the true longitude of the sun L.
24

 

 

In the formulas E = (0(l – l0) and Es = (l – l0) – (0we can see 

that in both the Almagest and the Handy tables l0 and  correspond to the epoch T0. Al-

Battani follows the system of the Almagest, but he fixes the limit at 2/3 of Aquarius, 

exactly at 318.5°. The spans of time beginning at a moment when L0=318.5° always give 

a subtractive correction, and it is maximal when it ends at the moment when L=210°. Al-

Battani gives a table of the equation of time as a function of the true longitude of the sun. 

This table directly gives the correction for a time span beginning when L0=318.5°.  Rome 

(1939) considered the epoch of Al-Battani to be the beginning of the era of Dhu’l 

quarnayn: on March 1, −311 (or 312 B.C.E.) at noon (it is actually on March 0, -310 

B.C.E.), 
25

 and can also be used for the equation of time. In fact, Al-Battani does not give 

any radix relative to this date, contrary to Ptolemy; it is not possible to make any 

calculation relative to the time span between this epoch and a particular moment. 

 

It seems that Al-Battani has no epoch for the equation of time, and instead of 

fixing T0 of the epoch, he fixes L0=318.5°; each year when L0= 318.5°, the epoch of the 

equation of time is again reached. This expression seems to be an evolution toward the 

concept of mean time.
26

 

 

Therefore, we consider that Al-Battani’s table of radices, book 2, page 72 

(calculated at intervals of twenty years from 931 SE until 1631 SE for March 0 at mean 

noon) is established in the mean time of Al-Battani. This mean time coincides with the 
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true time when the true longitude of the sun is L=318.5°. The corrections from true time 

to mean time are always subtractive. In other words, the true noon always occurs before 

the mean noon, except when L=318.5° when it occurs at the same time. 

In the formula E = E – E0, we have that E = 0 when Lo=318.5°. 

But in modern astronomy: E0= (− l0) =16.44m for Lo=318.5°. Hence, E0=Tm − T 

yields: E0 + T = Tm with E0 =16.44m. 

 

Tm is the modern mean time when L0=318.5° and T is the true time when 

L0=318.5°. We also know that the mean time of Al-Battani coincides with the true time 

when L0=318.5. We then derive the following equation:   

 

Mean Time of Al-Battani + 16.44m = modern Mean Time
27

 

 

 

Figure 1: Equation of Time for Year 2000 Expressed by the Method of the Ancient Astronomers 

 Lower x-axis = Almagest and Al-Battani mean time = 0. 

 The correction from true time to mean time is subtractive from 0 to 31m (33m in Almagest). 

 Upper x-axis = Handy Tables mean time = 0. 

 The correction from true time to mean time is additive from 0 to 33m. 

 The horizontal line at September 1 = modern mean time = 0. 
 

10 

20  

 
   31 

  
0 
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Figure 2: Equation of Time for Year 2000 Expressed by the Method of the Modern Astronomers 

 

IV. Maimonides and the Equation of Time 

 

A. Introduction 

 

The Laws of the Sanctification of the New Moon (in Hebrew, Hilkhot Kidush ha-Hodesh 

H.K.H.) is the eighth part of the third book (the book of the Seasons) of the fourteen 

books that constitute Maimonides’ famous treatise, the Hibbur
 28

or Mishne Torah. These 

laws include nineteen chapters, divided into three parts: 

 

1. Chapters 1-5: the empirical calendar based on the observation of the new moon                 

and the connected laws, 

2. Chapters 6-10: the fixed calendar, and  

3. Chapters 11-19: the astronomical chapters devoted to the calculation of the prediction 

of the visibility of the new crescent of the moon. 

 

In the introduction to his treatise, Maimonides writes that his treatise constitutes 

the synthesis of the whole oral law.
29

 He thought and hoped that it would replace the oral 

law and that it would be used in conjunction with the Bible without the necessity of 

studying the Talmud to make practical decisions. Similarly, he writes (H.K.H. 19:13) that 

the astronomical chapters allow readers to calculate the visibility of the new moon by 

applying his simplified rules without the need to consult any other astronomical books. 

 

In both the general case and the specific case of astronomy, things did not evolve 

as he had hoped. Despite the tremendous impact of his treatise on Talmudic study, 

Talmudic studies have remained alive and his treatise has not supplanted the Talmud. 

Similarly, his algorithm for the prediction of the visibility of the new moon has not been 

widely used, but generations of scholars have tried to understand and find a justification 

for his rules through the use of the astronomical books he wanted readers to avoid. In 
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fact, the understanding of Maimonides’ astronomical chapters was slow and progressive, 

the first steps of which were the commentary by Obadia ben David (fourteenth century),
30

 

followed by the commentaries of Levi ben Habib
 
(1565)

31
 and Mordehai Jaffe (1595).

32
 

The mathematician Raphael Levi of Hanover (1685-1779) contributed significantly to the 

understanding of these astronomical chapters. Levi was the pupil and secretary of the 

famous German mathematician, G.F. Leibnitz (1646-1716). He was the first to introduce 

mathematics, especially spherical trigonometry, into the study of Maimonides’ work on 

astronomy. His two books (printed in Hebrew) – the first
33

 in 1756, the second
34

 in 1756 

and 1757, and his many, existing Hebrew manuscripts – are nearly unknown, so that his 

contribution
35

 has unjustly been forgotten. Then, in the twentieth century, there are the 

decisive contributions of E. Baneth
 
(1898, 1899 and 1903)

36
 and O. Neugebauer (1949). 

In 1996, I published my Hebrew book Hilkhot Kiddush ha-Hodesh al pi ha-Rambam. I 

thought that it would be the final word in the long discussion of Maimonides’ 

astronomical work. In my book, the problem of the lunar parallax, in longitude and in 

latitude, is indeed thoroughly examined. Nevertheless, two important problems remained 

unsolved. These problems are the exact epoch of Maimonides and the exact moment of 

vision defined by Maimonides. This paper presents a definitive solution.  

 

B. The Problem 

 

In astronomy, an epoch is a particular moment at which all of the astronomical 

parameters are specified. The epoch of Maimonides is Thursday, the third of Nissan 4938 

at the beginning of the night
37

 (or Wednesday evening, March 22, 1178 C.E).
38

 The exact 

moment of this epoch has remained imprecise. Hanover has fixed this moment at 18h 

20m,
39

 but this moment does not coincide with the moment of vision of the moon on this 

evening.
40

 Neugebauer has argued that the epoch occurs at 18h.
41

 Nevertheless, he later 

corrected the moment of the epoch and fixed it at 18h 20m.
42

  In his astronomical 

commentary on the Laws of Sanctification,
43

 Neugebauer again fixes the epoch at 18h. 

Wiesenberg, in his Addenda and Corrigenda,
44

 corrects this value to 18h 20m. In Ajdler 

(1996), I also fixed the epoch at 18h 20m, but I was forced to admit that this value was 

not satisfactory because it should correspond to the moment of vision of the moon on this 

evening. Indeed, starting from this epoch and adding a round number of days (with a 

small correction to account for the seasonal variation of the day’s length), we must derive 

the moment of vision (using Maimonides’ algorithm). Therefore, the epoch must also be 

a moment of vision, about 20 minutes after sunset.
45

 The fundamental problem causing 

this uncertainty is that Maimonides does not specify which sunset he takes into 

consideration. It could be the geometrical sunset when the altitude of the sun is 0° (the 

normal sunset considered by Ptolemy and Al-Battani), the theoretical apparent sunset 

when the center of the sun is apparently at the horizon (the altitude of the sun is then 

−.5667°),
46

 or the apparent sunset when the upper limb of the sun is apparently at the 

horizon (the altitude of the sun is then −0.85° according to modern knowledge).         
 

 

C. Neugebauer’s Proposal 

 

Neugebauer (1949) attempts to justify and explain Maimonides’ epoch and 

radices. Neugebauer establishes that the five radices given by Maimonides at the epoch 
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(longitude of mean sun, sun’s apogee, longitude of mean moon, moon’s anomaly, and its 

ascending node) can be deduced nearly perfectly from the radices of Al-Battani given for 

the year 1471 SE, March 0 at noon, after the addition of the movements during 18 years, 

22 days, and 6h 49 or 50m relying on Al-Battani’s different tables of movement. In fact, 

neither of these two values gives a perfect justification of all Maimonides’ radices 

together but 50m gives a better, but not perfect, coincidence. 

 

Incidentally, Neugebauer specifies March 1, 1471 SE for the basic epoch and 

March 23, 1178 C.E. for the epoch of Maimonides. Both dates are incorrect by one day,
47

 

but errors compensate for one another and yield a correct difference of 22 days. 

Concerning the difference of longitude between ar-Raqqah in Mesopotamia (the place 

where Al-Battani’s tables were established) and Jerusalem (the place where Maimonides 

calculated his radices), Neugebauer uses the values given by Al-Battani: ar-Raqqah: 

73°:15’,
48

and
   

Jerusalem: 66°:30’,
49

 leading to a difference of 6°:45’, corresponding to a 

difference of time of 27m
50

 between the two towns.  This leaves a difference of 23m 

requiring justification, to reach a difference of 6h50m between noon of Al-Battani in ar-

Raqqah and about 18h 20 min in Jerusalem. As a consequence, Neugebauer fixes the 

epoch of Maimonides at 18h 20m
51

 and considers that the last 3m are to be neglected and 

attributed to the approximate calculations. Indeed, from noon in ar-Raqqah until 18h 20m 

in Jerusalem, there is a difference of time of 6h 20m + 27m = 6h 47m, slightly inferior to 

the 6h 50m required. 

 

D. My Solution 

 

 I have never been satisfied with Neugebauer’s explanation, because the epoch 

should correspond to the moment of vision of the moon, which is approximately
52

 20m 

after sunset on the evening of the epoch.
53

 Furthermore, it seems that Neugebauer was not 

yet aware in 1949 C.E. of the difference of 16m 44s between Al-Battani’s mean time and 

our modern mean time.
54

  

 

 Let us reconsider the problem: the radices of Maimonides are the following: 

 

Mean sun’s longitude:  7°:03’, 32”
55

 

Sun’s apogee   86°: 45’, 08”
56

 

Mean moon’s longitude 31°: 14’, 43”
57

 

Mean anomaly   84°: 28’, 42”
58

 

Ascending node  −180°: 57’, 28”
59

 

 

 In this paper, we assume that Maimonides could determine the difference 

between the geometrical sunset (when the altitude of the sun
60

 is 0°) and the apparent 

sunset, as observed by any observer when the upper limb of the sun disappears at the 

horizon. The apparent sunset plays an important role in Jewish halakha and must be 

distinguished from geometrical sunset. We also assume that Maimonides considered 

apparent sunset when the depression of the sun is 1°.
61
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 The mean sun’s longitude is thus 7°: 03’ 32’’ and the true sun’s longitude is 9°: 

00’ 17”.
62

 The true time of apparent sunset, when the upper limb is at horizon, 

corresponds, according to Maimonides, to a depression of the sun’s center of 1°. This 

happens at 18h 13m 43s
63

 true time. Rounding off to 18h 14m, we find the moment of 

vision at 18h 34m true time. This would be the moment of vision if Maimonides were 

considering this apparent sunset as the sunset. In the next section, we show that the 

moment of vision was indeed at 18h 34m true time, which proves that Maimonides’ 

sunset was the apparent sunset. 

 

 Considering the time interval between March 0, 1489 SE at noon in ar-Raqqah, 

ABMT (Al-Battani mean time) and this moment 18h 14m true time (expressed in mean 

time (or uniform time)), we derive the true longitude of the sun, at the end of the time 

span, to be about 9°.
64

 We find in the table of the Equation of Time, Book 2, p. 62, for 9° 

in Aries : Aequatio Nychtemeron:
65

 2°: 57’, corresponding to 11.8m. The correction from 

true time to mean time is always subtractive. On the other hand, we must remember the 

difference of 27m between ar-Raqqah and Jerusalem, for which Maimonides accounted. 

Therefore, the time span is ultimately 22d 6h 34m + 27m – 11.8m = 22d 6h 49m. It is 

expressed in mean time and represents the time span between March 0, 1489 SE, at mean 

noon in ar-Raqqah, and the moment of vision in Jerusalem on Wednesday evening, 

March 22, 1178 C.E., at 18h 34m Jerusalem true time, twenty minutes after apparent 

sunset, which occurred at 18h 14m Jerusalem true time. We can now define the mean 

time of Al-Battani in contemporary terms. On the day of the epoch of Maimonides, the 

moment of vision (20m after sunset) is at 18h 34m Jerusalem true time or 18h 22m 

AJMT (Al-Battani Jerusalem mean time). The difference of time between noon in ar-

Raqqah and twenty minutes after sunset in Jerusalem is then 6h 22m + 27m = 6h 49m, 

very close to the required 6h 50 min.  

 

We now express the same reasoning in contemporary terminology. The epoch is 

at 18h 22m AJMT, or 18h 38.5m Jerusalem modern mean time. The modern equation of 

time at the epoch is 4.5m and the true time is then T = Tm – E, or 18h 34m. On March 22, 

1178 C.E. (epoch), noon in the tables of Al-Battani, Al-Battani mean noon in ar-Raqqah 

corresponded to 12h 12m true time, and because of a difference of time between the two 

towns of 27m, it was then 11h 45m true time in Jerusalem. Apparent sunset happened at 

18h 14m Jerusalem true time and the moment of vision was 18h 34m Jerusalem true time. 

The difference between these two times, 18h 34m and 11h 45m, is still 6h 49m.  

 

We now ascertain that 6h 49 m corresponds to the difference between Al-Battani’s 

mean noon in ar-Raqqah and 20 m after the apparent sunset in Jerusalem. The difference 

of one minute with the better value of 6h50m used by Maimonides can come from either:   

 The truncation of the Aequatio Nychtemron to 11m by a process similar to the 

truncation by Maimonides of 51.8 miles to 51miles,
66

 or 

 A different evaluation of the difference of longitude between ar-Raqqah and 

Jerusalem following Ptolemy instead of Al-Battani. In Ptolemy’s Geographia,
67

 we 

indeed find the following data: 

Palestine:  Hierosolyma
68

  66°  31° 2/3.   

Mesopotamia:   Nicephorium
69

  73° 1, 1/2 35° 1/3 
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The difference of Longitude between ar-Raqqah and Jerusalem is then: 

           73°: 1’ 30”- 66° = 7°: 1’ 30” = 7.025° = 28.1 m. 

 

The calculation of Maimonides would then be: 6h 34m +28.1m -11.8m = 6h 50.3m, 

which is rounded to 6h 50 m. 

 

The difference of 6h 50 m necessary to justify Maimonides’ radices, as already 

observed by Neugebauer, now corresponds perfectly to the difference between Al-

Battani’s mean noon in ar-Raqqah and “the moment of vision” in Jerusalem, 20 m after 

apparent sunset.  

Table 1: Summary Table (ABMT = Al-Battani Mean Time) 

 
 

E. Conclusions 

 

We have demonstrated that the epoch of Maimonides is not 18h 20m Jerusalem 

modern mean time as it has been believed since the publications of Raphael Levi in 1756. 

In fact, it appears that the epoch was at about 18h 22m or 18h 23m Jerusalem ABMT, or 

18h 38.5m Jerusalem modern mean time, which corresponds to 18h 34m Jerusalem true 

time, twenty minutes after Maimonides’ apparent sunset.
70

 

 

Another unsolved problem now simultaneously finds a solution. The moment of 

vision, as assumed in Ajdler (1996), is about twenty minutes after the apparent sunset,
71

 

as demonstrated in this paper.
72

 

Jerusalem ABMT 

Jerusalem true time 

Jerusalem modern mean time 

-16.5m 
Modern equation of time ES 

-12m -4.5m 

Aequatio Nychtemeron 

Ar-Raqqah ABMT  
30d 22d 6h 49m 

Ar-Raqqah true time 

Ar-Raqqah modern mean time 

Year 1178 CE (1489 SE) 

11h;47.5m 11h;47.5m 18h;38.5m 

30 January 0 March 22 March 

0 4.5m 12m 

12h 12h 18h;49m 

30d 4.5m 22d 6h 56.5m 

12h 12h;4.5m 19h;1m 

11h;31m 11h;35.5m 18h;34m 

11h;31m 11h;31m 18h;22m 

12h;16.5m 12h;16.5m 19h;5.5m 
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Maimonides has perhaps neglected the problem of the equation of time in his 

algorithm of visibility calculation,
73

 but in the calculation of his radices, he has taken it 

into account.
74

 He demonstrates in these calculations a special mastery and 

professionalism, especially in the manipulation of the equation of time, the correct 

interpretation of the date of the epoch of Al-Battani,
75

 and the correct conversion of the 

date of his epoch to the Julian date despite his not using this calendar.
76

 

 

Maimonides demonstrates a remarkable coherence and precision in his treatise’s 

calculations,
77

 even if he could have been clearer and more precise in his various 

definitions (such as sunset, beginning of the night, and appearance of three stars of 

middle size); apparently, the definitions were evident to him. 

        

V. The Interpretation of Al-Battani by Abraham bar Hiya and Maimonides 

 

A. Introduction 

 

The problem of the equation of time is examined in Nalino, chap XXIX, pp. 48-

49. At the end of page 49, there is an embarrassing sentence, which has not yet found a 

satisfactory explanation: 

 

“Et cum res ita sint ut diximus, loco median Lunae in initio 

calculi 18 minuta addidimus” (“And in order that things 

should be as we said, we have added 18 minutes (of a 

degree) to the position of the mean moon in the beginning 

of the calculation.”) 

 

The Arabic text of Nalino
78

 confirms this translation. We already know that 18’ 

represents the variation of the mean longitude of the moon during one half-hour, which is 

the difference between the mean time according to the Almagest and the mean time 

according to the Handy tables. Therefore, it is clear that the mean longitude of the moon 

at noon in the Handy tables is greater than the longitude of the moon at noon in the 

Almagest by 18’. When it is noon in the Handy tables, it is only about 11h 27min in the 

Almagest (although 11h 29m would be more correct). Recall the formula: T Almagest + 

33m = T Handy tables. 

 

Schiaparelli, in his commentary, writes that he understands that Al-Battani added 

18’ to his radices of the moon to make his tables compatible with the Handy tables. Rome 

(1943) criticizes this opinion on the ground that the tables of Al-Battani and the Handy 

tables are incompatible and that this small addition of 18’ does not help much. Rome 

writes that on Choiak 27 of the year 1370 of the era of Nabonassar – corresponding to 

July 15, 622 C.E. (at the beginning of the era of the Hegira) – the mean longitude of the 

moon according to the Almagest is 130°:22’27”, which corresponds to 10°:28’41” more 

than Al-Battani’s data. Therefore, Rome says that the addition of 18’ to the longitude of 

the moon does not help much. In reality, Rome makes the same error as Nalino and 

Neugebauer by assuming that the radices given by Al-Battani on page 19 of his book 
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correspond to the first day of the different Arabic years and especially that the radices of 

the first line of this page correspond to the first day of the Hegira. The truth is that these 

radices are always given for day 0 of each year,
79

 and we must add the movement of 

another day to get the radices of the first day of each year and for the first day of the 

Hegira. The mean longitude of the moon on the first day of the Hegira, calculated in 

Alexandria, after the subtraction for the movement of the moon during the times 

corresponding to the difference of longitude between ar-Raqqah and Alexandria, is then: 

119°:43’ 46” + 13°:10’ 35” − 0°:20’ 05”= 132°:34’ 16”. The longitude deduced from the 

Almagest is 130°:22’ 27”. 

 

The difference is then about 2°:12’. This difference is the consequence of the 

overvaluation of the tropical year adopted by Ptolemy, but it is also the consequence of 

Ptolemy’s lack of precision in the determination of the equinoxes. It is hardly conceivable 

that Rome could assign an error of more than 10° to either Ptolemy or Al-Battani (one of 

the best observers, perhaps at the same level as Tycho Brahe), which proves that the 

epochs of Al-Battani are always on the 0 of the month or the year under examination. 

Schiaparelli thinks that Al-Battani has added 18’ to his radices to make his tables 

compatible with the Handy tables. If this were the case, all his data would be expressed in 

Handy table mean time (HTMT) and the correction from true time to mean time would be 

additive. This contradicts Al-Battani’s account. Therefore, the explanation of Schiaparelli 

is impossible. 

  

B. The Reading of this Passage by Abraham bar Hiya
80

 

 

In Abraham bar Hiya’s book, Sefer Heshbon Mahalekhot ha Kohavim (Book of 

the Calculation of the Movements of the Stars) (written c.1122 C.E., just after the book 

Zurat ha-Aretz
81

), chapter 9 is devoted to the equation of time. In the existing Hebrew 

texts of the book, the original’s tables were omitted.
82

 Chapter 9 follows the Almagest 

and its numerical values. Nevertheless, in the last paragraph, which unfortunately, is 

absent in the Spanish edition, Savasorda refers to the last paragraph of Al-Battani, and he 

writes: 

 
הוסף על שורש    , ולתקן החשבון הזה בלוחות החקוקות בספר הזה לחשבוננו  

שהן ערך מהלך,ח שברי מעלות''מהלך לבנה ביום הראשון לחשבון הספר הזה י  
והוצאנו סך החילוף הזה, הלבנה במידת החילוף הנמצא בין הימים ולילותיהם  

 

“And to correct this calculation, in the tables calculated in this book, add to the radix of 

the movement of the moon at the epoch chosen in this book, 18’ [fractions of a degree], 

which approaches the movement of the moon during [a half-hour, which represents the 

maximum value of the] equation of the days.” 

 

From the text of Savasorda, we can deduce that in his text of Al-Battani, instead 

of “we have added,” “add” was probably written. In other words, the tables of Al-Battani 

do not include the addition of 18’, but to be compatible with HTMT, one must add 18’ to 

the longitude of the moon. 
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C. Maimonides’ Understanding 

 

In the previous section, we explained the justification of Maimonides’ radices and 

proved that the epoch of Maimonides was twenty minutes after the apparent sunset, or 6h 

50m after the mean noon of Al-Battani in ar-Raqqah. Maimonides had to make a 

subtractive correction from true time to mean time. This subtraction proves that 

Maimonides knew that he was not working according to HTMT, but according to the 

mean time of the tables of Al-Battani, similar to the mean time of Almagest. This 

understanding shows that Maimonides had a similar understanding of Al-Battani to 

Abraham bar Hiya, and he was not bothered by the sentence relating to the addition of 

18’. 

 

D. Conclusion 

 

This study of the two Jewish scholars of the twelfth century allows us to understand 

this obscure passage of Al-Battani correctly. We must conclude that this passage was 

corrupted in the Arabic manuscript used by Nallino.
83

 

 

VI. The Epoch of Abraham bar Hiya 

 

In Sefer Heshbon Mahalekhot ha-Kohavim, Abraham bar Hiya writes that his 

epoch was on Wednesday, 29 Elul 4864, at the beginning of the 257
th

 cycle, at the end of 

the sixth hour in Jerusalem, which is Wednesday, September 21, 1104 C.E. at true noon. 

To demonstrate this point precisely, let us examine the first lines of two tables found in 

the Spanish translation of Millas: 

 

 

Day 

Completed 

cycles 

AM Years 

Egyptians 

Months Days Hours Min Sec
84

 

Friday 257 4883 19 0 4 16 19 40 

Monday 258 4902 38 0 9 8 52 43 

Thursday 259 4921 57 0 14 1 28 47 

Saturday 260 4940 76 0 18 17 58 50 

Table 2: Table of the conjunctions of the two heavenly bodies in Tishri, at the beginning of each 

cycle, beginning with the cycle 257 (1104-1123 C.E.) 

The origin is 13m 23s
85

 before true noon on Wednesday 9/21/1104 

 
 

Begin 

cycle 

Position of the sun and 

moon 

Moon’s anomaly Longitude of moon’s 

ascending node 

 degrees min sec Degrees min sec degrees min sec 

257 186 59 27 351 10 19 199 31 0 

258 186 59 37 298 5 52 207 6 14 

259 186 59 48 245 1 25 214 41 27 

260 186 59 58 191 56 58 222 16 40 

Table 3: Table attached to the former, related to the conjunction of the two heavenly bodies in Tishri 

at the beginning of each cycle, beginning with the cycle 257 
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The first table verifies that the difference between the numbers of the different 

cycles (after the correction of misprints) is 4d 16h 33m 3s,
86

 exactly the difference 

between the length of 235 Jewish lunations of 29d 12h 793p, representing 6,939d 16h 

33m 3.33s and the length of 19 Egyptian years of 19*365=6,935 days. The beginning of 

each cycle is, according to the length of the Jewish cycle, 4d 16h 33m 3s after the 

beginning of the former cycle. 

 

We can further see that the difference between this time span 4d 16h 33m 3s and 

the first line is   

 

 
 

Therefore, contrary to the indication appearing in the first table, in the Spanish 

edition of Millas,
87

 the epoch that was at first sight at true noon is really 13m 23s before 

true noon. The origin of time is in fact at true noon and the beginning of the different 

cycles is listed with regard to this origin, but the epoch, the moment at which the radices 

are calculated, is 13m 23s before this origin. 

 

The first problem is to know when cycle 257 exactly begins and the astronomical 

meaning of this epoch, 13m 23s before true noon. The molad of Tishri 4855 is 4-18-244, 

or 13.56m after mean noon. Of course, Abraham bar Hiya considered his mean noon in 

ABMT, which on that day corresponded to about 12h 39m
88

 Jerusalem true time. This 

time is certainly not the moment Abraham bar Hiya intended. 

 

Because of Abraham bar Hiya’s great dependence on Al-Battani, let us examine 

the moment of the mean conjunction of Tishri 4865 according to Al-Battani’s tables. 

Tishri 4865 AMI corresponds to Tishri 1416 S.E. and to September 1415 Dhu’l 

quarnayn, (this era begins six months later).
89

  

According to the table of mean conjunctions,
90

 we find the following: 

 

year months days min sec degrees min sec
(1/60 day) (1/3600 day)

1407 26 16 39 10 42 59

8 1 31 44 1 34 56

6 177 11 1 174 56 28

204 59 24 186 56 23  
 

The conjunction was on September 21 at 11h 45.6m aRABMT (ar-Raqqah Al-Battani 

mean time) slightly before mean noon. Indeed, counting 205 days from the epoch, March 

0, we arrive at September 21 at noon. 

 

4d 16h 33m 3s

4d 16h 19m 40s

13m 23s
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A more comprehensive calculation according to the table of Al-Battani
91

 shows 

the following for September 21 at noon, 1415 Dhu’l quarnayn, using the entries 1411 

years, 4 years, August and 21 days in Al-Battani’s tables: 

              
 Sun’s mean 

longitude 

Moon’s mean 

longitude 

Moon’s anomaly Longitude of moon’s 

ascending node 

 degr

ees 

min sec degree

s 

Min Sec degree

s 

min sec degree

s 

Sec Min 

1411 344 51 42 195 11 22 185 1 51 111 15 17 

4 0 2 14 170 43 7 7 56 23 77 21 41 

August 181 21 36 264 27 27 243 57 25 9 44 34 

21 days 20 41 55 276 42 16 274 21 53 1 6 44 

Total at 

12h 186 57 27 187 4 12 351 17 32 199 28 16 

Minus   33  7 18  7 15   2 

Total at 

11h 

46.7m 186 56 54 186 56 54 351 10 17 199 28 14 

 

At mean noon, the difference of longitude is 6’ 45”= 405”. In one hour, the variation of 

elongation between the sun and moon is 1976 − 148 = 1826”/hour. The mean conjunction 

was 405/1826 h = 0.221796 h before mean noon, at 11h 46.7m aRABMT. The sun’s 

mean longitude is 186° 56’ 54”, the sun’s true longitude is about 185°, and the equation 

of time according to the table Aequatio Nychtemeron
92

 of Al-Battani is 6° 28’ or 25.86m. 

As for the distance between ar-Raqqah and Jerusalem, Al-Battani gives the following 

longitudes: 66.50° for Jerusalem and 73.25° for ar-Raqqah. The difference between these 

longitudes is 6.75°, corresponding to 27m. 

 

 
 

This time differs by about 1m from 11h 46.62m, the epoch of Abraham bar Hiya. When 

we compare the radices given by bar Hiya, with the values deduced from the tables of Al-

Battani, we verify a very good, but not perfect, coincidence. 

 

Note that bar Hiya writes that the longitude of Jerusalem is 67.5°, different from the 

value of 66.5° given by Al-Battani and from the value of 66° given by Ptolemy.                                                                                                                                                                                                                            

Further, we do not know the table of equation of time of bar Hiya and we do not precisely 

know the difference of longitude he considered between Jerusalem and ar-Raqqah. Bar 

Hiya’s explanation of the theory of the equation of time is practically the same as in the 

text of al-Battani, but the value of its maximum is Ptolemy’s figure. Therefore, the 

former calculation remains conjectural. When we compare the values of Al-Battani with 

modern values, we observe that in 1104 C.E., the mean conjunction of Al-Battani was 

twenty minutes too late and the longitude of the two heavenly bodies at conjunction was 

26’ too great. 

The mean conjunction occurs then at 11h   46,70m

Equation of time 25,87m

Difference of longitude 27,00m

11h 45,57m   (Jerusalem True Time)
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In conclusion, the epoch and the radices of Abraham bar Hiya are compatible with 

the tables of Al-Battani. Nevertheless, slight differences remain inexplicable. It is certain 

that the equation of time was taken into account in the determination of the epoch. While 

the tables of Al-Battani had an unbelievable precision at the beginning of the tenth 

century, in the beginning of the twelfth century, they had lost their accuracy. 

Nevertheless, it appears that these tables were still used as reference despite the existence 

of new tables like those of Abraham ibn Zarkali
93

 (the Toledan Tables). The epoch of 

Abraham bar Hiya is 13m 23s before true noon of Wednesday, September 21, 1104 C.E., 

and it can be confirmed by the use of the tables of Al-Battani, accounting for the equation 

of time and the distance between ar-Raqqah and Jerusalem, according to his tables. The 

epoch is the mean astronomical conjunction according to Al-Battani. The beginning of 

the following cycles is derived from the epoch by the addition of the length of Jewish 

cycles of 235 Jewish lunation of 29-12-793. 

 

 

 

VII.  The Problem of the Molad  

 

A. Introduction 

 

The length of the synodic month adopted in the Jewish calendar is 29d 12h 793p. 

It corresponds to 29d 12h 44m 3.33s, and this value is slightly greater than the theoretical 

value found by Ptolemy.
94

 Nevertheless, perhaps because the former value was already 

known in Babylonian astronomy, Ptolemy adopted the latter value, although his own 

value was more accurate.
95

 The date of the introduction of this value for the Jewish 

lunation is a subject of endless discussion, which is outside the scope of this article. Stern 

(2001), p. 204 considers that the first allusion to a Jewish month of this length appears in 

a liturgical poem of R’ Pinkhas (late eighth or early ninth century), which refers to the 

division of the hour in 1,080 parts. This division was specifically designated for this 

lunation. Some scholars consider that this lunation was already used in Hillel’s calendar 

with the same Molad as today. Others, however, on the basis of the dictum of Ravina in 

Babli Arakhim 9b,
96

 consider that the length of the Jewish month evolved from a rough 

value of  29d 12h to the value of 29d 12h 40m (the day of the hours
97

), and then, in a 

second step, to 29d 12h 44m (the day of thirty years
98

), and finally, in the late eighth or 

early ninth century, to the final value of 29d 44m 3.33s. At the foundation of Hillel’s 

calendar, the Molad was different than ours, and the lunation was still 29d 12h 44m, or 

29-12-792.
99

 

 

At this stage, we must consider a piece of evidence which already mentions, at 

least at first glance, the present-day molad calculation. In the Targum on Genesis 1:16, 

ascribed to Jonathan ben Uziel,
100

 there is a reference to the molad of 4d 20h 408p,
101

 

which corresponds to the molad of the 12
th

 month before Beharad.
102

 As Pseudo Jonathan 

is ascribed to not later than the eighth century, this would advance the introduction of 

Beharad before the end of the eighth century and contradict the main thesis of Borenstein 

(1922) and Jaffe (1931).
103

 Nevertheless, there is no unanimity about the period of 
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composition of Pseudo Jonathan.
104

 Furthermore, Jaffe mentions the existence of a 

variant reading of the passage and considers that the last eight words are probably later 

interpolation.
105

 Stern (2001) also has similar considerations about the probability of later 

interpolation in this passage.
106

 Finally, even if the complete litigious passage was 

original, the calendar of Pseudo Jonathan would not be in accordance with our modern 

calendar because the mentioned molad would be the molad of Heshvan of year 1 before 

AMI, because the year before Beharad is, in our modern calendar, a leap year. 

 

There are very few elements available to date this history precisely.  But there are 

two pieces of relevant evidence: First, from the “Letter of the Resh Galuta (the 

Exilarch)”, we know that the fixing of the years 4596 and 4597 AMI (Beharad) were 

different than in our calendar rules.
107

 Second, from various documents, we know that 

there was an important dispute between Palestinian and Babylonian religious leaders – 

Saadia Gaon and Ben Meir – about the fixing of the years 4682, 4683 and 4684 AMI.
108

 

 

It appears that the Molad of both countries were different by 642p (about 

35.67m). The motivation of the Exilarch’s letter remains obscure. It does not seem to be a 

letter of announcement, as it does not even mention that the year 4596 is a leap year. 

Rather, it seems more like a letter of justification, which explains its insistence on the 

necessity of unity in the Jewish community and the preeminence of Palestine in the field 

of the calendar. 

 

This letter raises two questions: first, whether the rules of the Jewish calendar 

were the same as today, and second, whether the Resh Galuta was aware of the Molad 

used by the Havura of Palestine in its calculations. According to our modern calendar, the 

leap year 4596 was full, with 385 days. Rosh Hashannah was on Saturday, August 28, 

835 C.E., the first of Nissan was on Thursday, March 23, 836 C.E., and Rosh Hashannah 

4597 was on Saturday, September 16, 836 C.E. According to the letter of the Exilarch, 

the first of Nissan was on Tuesday, March 21, 836 C.E. and Rosh Hashannah 4597 was 

on Thursday, September 14, 836 C.E. The year 4597 was defective, with 383 days. 

According to our calendar, the Molad of year 4597 is 5-20-169 and the first of Tishri was 

delayed until Saturday because of Molad Zaken.
109

 The Molad of the preceding Nissan is 

derived from the former Molad by subtraction of the residuum of six months, 2-4-438, 

and is then 3-15-811. 

 

In his letter, the Exilarch explains that the first of Nissan cannot be on Thursday, 

March 23 because of the danger of seeing the new crescent of the moon in the West (i.e., 

Palestine) before the beginning of the month. This argument is specious because we 

ignore it today. The question remains whether the argument was real or polemical. 

 

In his letter, the Exilarch mentions that the moon was born at four hours in the 

day. In the manuscript, the word “hour” is practically deleted, but today it seems certain 

that this was the word because of the trails of a  " ש "  .The problem is then to understand 

to which time the Exilarch was referring. Stern (2001), p. 196, thinks that the moment of 

the birth of the moon at four hours (in the day) is an approximation of our Molad; to 

explain why the fixing of that year was different than the fixing according to our modern 
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calendar, he is obliged to conclude that in the year 4596 the Molad Zaken was not yet in 

use. Such a conclusion implies that the rule of Molad Zaken, of which the origins are as 

obscure as its rationale, would have been introduced very late in a period when the 

Babylonians were already aware of the process of calculation of the Jewish calendar. It 

seems to me impossible that the organic rules would have been modified so late without 

Babylonian contradiction, especially because we do not see the reason for such a 

modification of these rules sanctified by their age.
110

 

 

Furthermore, this explanation does not yet explain the origin of the difference of 

642p between the Molad of the Babylonians and the Palestinians,
111

 which will appear 

later in 922 C.E. In my opinion, the rules of the calendar could not have been changed 

anymore. The only things still open to improvement were the physical data – the Molad 

and the length of the month. I suppose that the Babylonians were not yet aware of the 

Molad and that they were still subject to the authority and the Palestinian information, as 

we read it in the letter of the Exilarch. This letter is evidence of the first critics against the 

Palestinian authority. The Almagest had just been translated in Baghdad,
112

 and some 

scholars probably had found in the table of the mean conjunctions the conjunction of 

March 836 on 3-14-1041 in Alexandria, and after transformation into Baghdad time, it 

was indeed close to 3-16. This time corresponds to our modern 10 a.m. or 4 hours in the 

morning. As explained above, I am of the opinion that the rules of the calendar were 

already fixed long ago, but the Molad was not yet the same as today. It was earlier than 3-

13-642,
113

 and it was not a Molad Zaken. According to Jaffe, it was about 3-12-720,
114

 on 

the assumption that this Molad was still based on the Molad of Tishri 4537 AMI, as 

described in the Braita of Samuel
115

 and fixed on Tuesday, September 17
th

, 776 C.E. at 

18h
116 

(beginning of the Jewish Wednesday). 

 

The scenario could have been that the Exilarch advocated in favor of the 

Palestinians’ decision and against those people who contested the fixing of the year on 

the basis of the conjunction of Ptolemy.
117

 But the Exilarch probably expressed his 

doubts to the Palestinians about their fixation. It is probable that the Exilarch’s 

intervention led to a common meeting, around 840 C.E., in the course of which the new 

Molad to be adopted was discussed. Jaffe (1931), p. 107, has explained how the first 

Molad was fixed.
118

 In the table of the mean conjunctions found in the Almagest 

(Toomer, p. 278), the first conjunction occurred on Toth 24d: 44’ 17” of the first year of 

the era of Nabonassar, or March 24, 747 B.C.E. According to the conventions of the 

Molad, this conjunction would lead to 7-11-770,
119

 for the mean conjunction of Nissan 

3014 AMI. Returning to the origin of the calendar, we find for the Molad of Nissan 1 

AMI, 4-8-872, and for the Molad of Tishri 2 AMI, or year 1 AMII, 6-13-230. To transfer 

these values from Alexandria to Jerusalem, we must add 396p, corresponding according 

to Ptolemy, to a difference of longitude of 5.5°. Thus, we get in Jerusalem: Nissan 1: 4-9-

188, and Tishri 2: 6-13-626. The Babylonians preferred to work with Tishri
120

 and 

rounded the Molad Tishri to 6-14 by adding 454p, while their Molad Nissan 1 was 4-9-

642. On the contrary, the Palestinians rounded the Molad Nissan to 4-9 by subtracting 

188p.
121

 The Molad of the Babylonians was then 642p in advance in regard of the Molad 

of the Palestinians. 
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This difference of 642p between both communities
122

 led to the clash between 

Saadia Gaon and Ben Meir
123

 about the fixing of the years 4682, 4683, and 4684 AMI. 

Finally, it is the opinion of the Babylonians, the mightier group, which prevailed. The 

Palestinian community was too weak with respect to the Babylonian Diaspora. 

Apparently, its leader had no argument on which to rely other than his authority.
124

 

 

B. In which time is the Molad expressed? 

 

According to our introduction, the Molad is expressed in JAMT (Jerusalem 

Almagest mean time). The mean time considered is the mean time of the Almagest, and it 

can be considered to be about the same as the mean time of Al-Battani. This mean time is 

delayed by about 16.5m with respect to modern mean time. The table of the Jewish 

Moladot is a table similar to the table of conjunctions of Ptolemy, but there is always a 

difference of 850p between corresponding figures. If we add 850p to the conjunction of 

the Almagest, we derive the Jewish Molad. 

 

The Jews may have been the first to adopt mean time for the calculation of the 

calendar, although it was probably an adaptation of rules originally applied with true 

time, at least for Molad Zaken.
125 

The beginning of a day is fixed at 18h, which 

conventionally represents the beginning of the night. However, days have variable 

lengths, and this conventional limit of the day at 18h can differ by a few hours from 

sunset. This conventional 18h was expressed in their mean time, which was delayed by 

about 16.5m with respect to modern mean time. The difference between the ancient mean 

time (or if they did not consider this notion, the regular time of their tables) and modern 

mean time, which represents 16.5m,
126

 concerns not only the Moladot but also the 

Tequfot, which must also be considered in Al-Battani mean time. This consideration is 

especially true for the Tequfa R’ Adda, which was introduced later. It was called the 

hidden Tequfa, and R’ Judah ha-Levi wrote that it was in accordance with the 

observation of Al-Battani.
127

 

 

VIII. Conclusions 

 

In the present paper, we studied the relationship between these different times. In 

particular, we saw that ancient astronomers calibrated mean time differently than now, 

and the difference between their two times varied from 0 to about 31 minutes. This 

distinction allows us to clarify the following unsolved problems: 

 

1. The epoch of Maimonides – the moment at which all the astronomical parameters 

are specified – was never known with precision. We have established this moment 

with precision.  We show that this moment was twenty minutes after apparent 

sunset, at the beginning of the night, when three stars of medium size become 

visible to mark the end of the Sabbath in Jerusalem.  

 

2. We have explained the meaning of an obscure paragraph, at the end of Chapter 

29 of Al-Battani, related to the “problem of the inequality of the days and the 

equation of time.” 
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3. We have explained and justified the epoch of Savasorda (R’ Abraham bar Hiya 

ha-Nassi). 

 

4. Finally, we have shown that the molad, which is generally supposed to be 

expressed in Jerusalem mean time is actually expressed in ancient Ptolemy mean 

time. 

 

With the solution of these problems, it becomes clear that to understand ancient Jewish 

astronomy, one must understand the equation of time. 
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IX. Appendix 

 

A. Astronomical Background and Terminology 

 

Figure 3(a) represents, for an observer situated at point O of the Earth, the plane 

of the horizon, tangent to the Earth at O and the celestial vault of this observer. The line 

MM’ is the projection of the equator, and PP’ is the rotation axis of the Earth. In Figure 

3(b), we have suppressed the earth and completed the vault into the spherical sphere, an 

imaginary sphere surrounding the observer, after removing the Earth. In this figure, the 

plane of the horizon is unchanged; the celestial equator is parallel to the equator of the 

Earth. Points Z and Z’ are the zenith and the nadir, points P and P’ are the north celestial 

pole and the south celestial pole, PP’ is the axis of the world and points S, E, N, and W 

are, respectively, the geographical south, east, north and west of the observer. 

 

 

Figure 3(a): The celestial vault of an observer; (b): The corresponding celestial sphere 

 

Figure 4 adds the ecliptic, which corresponds to the annual path of the sun. Its 

inclination to the celestial equator is about 23.5°. The sun moves from west to east on the 

ecliptic, according to the direction of the dotted arrow (direct movement, 

counterclockwise). The ecliptic and the equator intersect at points γ and Ω. The sun 

passes through point γ at the vernal equinox and through point Ω at the autumnal 

equinox, and in Figure 4 it occupies the position A. Point Π is the pole of the ecliptic. 

Point A’ is the intersection of the great circle ΠA, perpendicular to the ecliptic, with the 

equator. The arc γA is the sun’s longitude, the arc γA’ is the sun’s right ascension and the 

arc AA’ is the sun’s declination, i.e., (90° - polar distance). The depiction corresponds to 

a sun’s longitude of about 210° and a sun’s declination of about -11.5°, on about October 

20. The tropical year is the time interval between two successive passages of the sun 

through the vernal equinox. 
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Figure 4: The ecliptic: the sun is in A, γ is the vernal equinox, and Ω is the autumnal equinox 

 
Figure 5: The diurnal rotation 
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Figure 5 represents the effect of the diurnal rotation. The rotation of the Earth 

results in an apparent rotation of the celestial sphere, from east to west about the axis PP’. 

This is a retrograde movement (clockwise) according to the arrow along the equator in 

Figure 5. In this figure, the stars, the sun, and the moon move clockwise on different 

parallels, according to their respective declinations. 

 

Fixing the position of the celestial sphere and of the sun and moon at any moment 

of the diurnal rotation requires another great circle of reference. This is the great circle 

PZMS, called the observer’s meridian. When the sun is on the observer’s meridian and 

above the horizon, it is noon; if it is under the horizon, it is midnight. At any moment, the 

sun’s position on the parallel of declination, is specified by the arc MA’ of the equator. It 

corresponds to the angle between the observer’s meridian and the meridian through the 

sun. This angle denoted by H is called the hour angle and is measured from the 

observer’s meridian westward from 0° to 360° or from 0h to 24h. It gives the local true 

time. In Figure 4, the hour angle of the sun is about 30°, and it is about 2 p.m. The hour 

angle of γ, the vernal point, is called the sidereal time. In Figure 4, it is about 240° or 16h. 

If we neglect the phenomenon of the precession of the equinoxes (50’’ or 0.01389° per 

year), the point γ can be considered as a fixed point in the celestial sphere of the fixed 

stars and the sidereal time permits the definition of the position of the celestial sphere of 

the fixed stars in its diurnal rotation. The duration of a complete rotation of the celestial 

sphere in its diurnal rotation is 24 sidereal hours or 23h 56m mean solar time. Indeed, 

during the sidereal day, the right ascension of the sun increases by about 1° and therefore 

its hour angle increases by 24h – 4m = 23h 56m.
128

 

 

Figure 6: The moon's path on the celestial sphere 
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Figure 6 represents the monthly path of the moon on the celestial sphere. The 

moon moves from west to east on a great circle according to the direction of the dotted 

arrow (direct movement, counterclockwise). This circle intersects the ecliptic at points N 

and N’, the ascending and descending nodes, respectively. Its inclination to the ecliptic is 

approximately 5°.  

 

            Figure 7 depicts the apparent orbit of the sun in the plane of the ecliptic according 

to modern astronomy and the laws of Kepler. Consequently: 

1. The apparent path of the sun around the earth is an ellipse, the position of the earth E 

being at a focus of the ellipse, its center is C and AP is its major axis. A is the apogee and 

P is the perigee (first law of Kepler). 

 

 

 

 
Fig 7: The sun’s orbit in the ecliptic according to modern astronomy 

           The sun moves counterclockwise on its orbit 

 

 

 

2. The radius vector ES (between the earth and the sun) sweeps out equal areas in equal 

times (second law of Kepler). 
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The ratio e = EC/CA = c/a is the eccentricity of the ellipse where a, is the semi-

major axis of the ellipse, b is its semi-minor axis and c = EC meets the relation a
2
 = b

2
+ 

c
2
. The radius vector ES makes an angle v with EP, v is called the true anomaly. Because 

of the second law of Kepler, v is not proportional to the time and differs from M the 

mean anomaly by a little angle called the equation of the centre. The eccentricity of the 

sun’s orbit is e = 0.01673 and therefore the oblateness of the ellipse is (a-b)/a = 1-√ (1-e
2
) 

= 0.00014 which is very small. The ellipse deviates very little from its circumscribed 

circle.
129

 

 

Figure 7bis depicts the orbit of the sun in the plane of the ecliptic according to 

Ptolemy; it is a circle centered at C, and the ecliptic is a circle centered at E, the Earth. P 

is the point of the sun’s orbit, nearest the Earth, the perigee. The furthest point of the 

sun’s orbit is A, the apogee. The ancient astronomers could indeed not imagine another 

movement than a uniform circular movement. They were nevertheless aware of the non 

uniform evolution of the sun’s longitude, which they knew by measuring the sun’s 

declination at true noon. Therefore they imagined to bring the sun’s orbit out of centre. 

 

 

Figure 7bis: The sun's orbit in the ecliptic according to Ptolemy's model. The sun moves 

counterclockwise in its orbit 

                                        

 

 

S is the sun on its orbit; S1 is the true position as seen from the Earth and S2 is its 

mean position.
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 Seen from E, the movement of the sun will appear fastest when closest 

to E in the perigee P and slowest in the apogee A. Angle α, counted from the apogee is 
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the anomaly
131

, angle β = α – δ is the quota of the anomaly,
132

 angle δ is the true 

anomaly
133

, and e = EC/CA is the eccentricity of the sun’s orbit. Point γ is the vernal 

point, γS1 is the true longitude L of the sun and γS2 is its mean longitude l, and γA’ is the 

apogee’s longitude θ.
134

 

 

B. Additional Definitions 

 

anomaly of the sun: the longitudinal distance, i.e., the difference of longitude, between 

the sun’s apogee at a given point of time and the sun’s mean position at the same time. 

anomaly, mean: a term serving to qualify the uniform moon’s rate of motion in the 

epicycle. 

anomaly, true: the mean anomaly increased by a certain correction depending on the 

size of the double elongation, permitting definition of the true position of the moon. 

conjunction: the moment when the longitude of the moon and sun are equal. 

double elongation: twice the distance between the mean position of the sun and that of 

the moon, serving to determine the value of the true anomaly and the true position of the 

moon. 

eccentricity: the ratio EC/CA, referring to Figure 7 and 7bis. 

elongation: the longitudinal distance between the true position of moon and that of the 

sun. 

epoch: point of time for which astronomical positions of sun, moon and planets have 

been established, and which serves as the starting point for the computation of such 

positions at other points of time. The value of these positions at the starting point, are the 

radices. 

equinoctial hours: equal hours of 1/24 solar mean days.  

Era of Contracts: ancient Jewish era beginning on Tishri 1, 3450 AMI.  

Era of Nabonassar: era used by Ptolemy in connection with Egyptian years of 365 days. 

Hegira: era of the Arabs, beginning July 15, 622 C.E. at sunset. 

lunar parallax: difference between the actual position of the moon, as seen from the 

Earth’s center, and its apparent position (as seen from the Earth’s surface). 

mean conjunction: the moment when the longitude of the mean sun and that of the mean 

moon are equal. 

mean moon: fictive moon having a uniform velocity in longitude. 

mean sun (ecliptic): fictive sun having a uniform velocity in longitude (point S2 in 

Figure 5). 

mean synodic lunation: the average value of the synodic months. It is also the synodic 

lunation of the mean moon. 

radices: the values of the positions of sun, moon and planets at the epoch. 

synodic month: the interval between two successive true conjunctions, when the 

longitudes of the sun and moon are the same. The average value of the synodic month is 

29.5306 mean solar days. 

solstices: points of the ecliptic corresponding to a longitude of 90° for the summer 

solstice (the right ascension is 90° and the declination is about 23.5°) and to a longitude 

of 270° for the winter solstice (the right ascension is 270° and the declination is about -

23.5°). The sun passes through these points on about June 21 and December 21.  
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temporary hours: hours representing 1/12 of the length of the day, i.e., the time between 

sunrise and sunset. 

 

C. Special Abbreviations 

 

ABMT: Al-Battani mean time. 

AJMT : Jerusalem Al-Battani mean time; 

AMI : Aera Mundi I. This is the generally used era of the Jewish years. Its epoch 

corresponds to the beginning of the year preceding the creation. 

AMII: Aera Mundi II. It was the generally used era of creation during the Gaonic period.   

Its epoch corresponds to the beginning of year 2, AMI, following the beginning of the 

creation.  

aRABMT: ar-Raqqah Al-Battani mean time. 

B.C.E.: Before Common Era. The Julian calendar was introduced by Julius Caesar at the 

occasion of an important calendar reform. He adjusted the year to the sun’s course by 

making it 365 days, abolishing the intercalary month, and adding one day every fourth 

year. All the dates anterior to January 1, 45 B.C.E. correspond to a fictitious Julian 

calendar. 

Beharad: the molad of Tishri year 1, AMI; it means ד''ב ה ר , Sunday evening, 11h 204p 

p.m. corresponding already to 5 hours and 204 halakhim in the 2
nd

 Jewish day of the 

week, it was 1 Tishri 1, AMI. i.e. Sunday, October 6, -3760 at 11h 11m 20s p.m. 

C.E.: Common Era. Until October 4, 1582, the dates are expressed in the Julian calendar. 

The day following October 4, 1582 C.E. was October 15, 1582. This day was the first day 

of the Gregorian calendar (new style). The Gregorian reform was made necessary 

because it appeared that both the Julian calendar and the Julian ecclesiastical lunar 

calendar no longer agreed with reality. During the sixteenth century the vernal equinox 

fell on the 11
th

 instead of the 21
st
 of March and full moon came three days earlier than 

was computed (according to the Ecclesiastical computation). During the twelfth century 

(period of Maimonides) the difference between the Julian calendar and the fictitious 

Gregorian calendar amounts to 7 days, if one adds 7 days to the Julian dates, one gets the 

corresponding fictitious Gregorian dates, allowing a first comparison with the present 

solar horary (vernal equinox, sunrise and sunset).      

HTMT: Handy Table mean time 

L0:   The letters with subscript 0 correspond to the beginning of the time span and those 

without subscripts correspond to the end of the time span. The beginning of the time span 

also represents the epoch. 

S.E.: Seleucid Era or Era of Contracts. The era of Dhu’l quarnayn, which refers also to 

Alexander the Great, begins about six months later, on March 0, -310.
135

 

Veyad: the molad of Tishri year 2, AMI or year 1, AMII; it means ד''ו י , Friday morning, 

8 a.m., 14 hours in the 6
th

 Jewish day of the week, it was 29 Elul 1 AMI.  i.e. Friday, 

September 25, -3759 at 8 a.m. 
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D. Biography 

1. Ptolemy and the Almagest 

 

Claudius Ptolemaeus lived from about 100 C.E. to about 175 C.E. He worked in 

Alexandria, the principal city of Greco-Roman Egypt, which possessed, among other 

advantages, what was probably the best library in the ancient world. Ptolemy is the author 

of the Almagest (the mathematical composition) that mentions astronomical observations 

until February 2, 141 C.E. Toomer (1984) supposes that the Almagest would not have 

been published earlier than 150 C.E. 

 

The Almagest is a complete exposition of mathematical astronomy. The book’s 

success itself contributed to the loss of most of the books of Ptolemy’s scientific 

predecessors. The Almagest rests on the attainments of the Greek trigonometry. The 

Almagest expounds Ptolemy’s system of the world, i.e., his mathematical models, and 

tries, not always perfectly, to account for astronomical observations. The sun moves 

uniformly on a great circle, slightly excentred with respect to the earth, but each planet 

moves uniformly on a little circle, the epicycle, of which the center moves uniformly on a 

much greater circle, the deferent, centered on the earth. The model of the moon is still 

more complex.
136

 

 

Ptolemy’s chronological system is as follows: he uses Egyptian years of 365 days 

consisting of twelve 30-days months and 5 extra days at the end. Ptolemy uses the Greek 

transliteration of the Egyptian names of the months: Toth, Phaophi, Athir, Choiak, Tybi, 

Mechir, Phamenoth, Pharmouthi, Pachon, Payni, Epiphy and Mesore.  For his epoch, he 

chooses the era of the Babylonian king Nabonassar because the earliest Babylonian 

observations available to him were from this king’s reign. Ptolemy’s epoch, Nabonassar 

1, Toth 1, noon (true time) in Alexandria corresponds to February 26, - 746 in our 

reckoning (Julian calendar). 

 

The success and the influence of this book were tremendous; it was probably, if 

we exclude the Bible, the most influential book of the antiquity, if not of the humanity. It 

was known in the Byzantine Empire in the original Greek version. It was translated first 

into Syriac and then several times into Arabic. Nevertheless, all knowledge of it was lost 

in Western Europe in the early Middle Ages; the principal channel for the recovery of the 

Almagest in the West was the Latin translation from the Arabic by Gerard of Cremona, 

made in Toledo in 1175 C.E. The Greek text was only printed in Basel in 1538 C.E. The 

Almagest lost its influence with the work of Copernicus, and it became obsolete with the 

work of Kepler, Astronomia Nova 1609, and then by the publication of Newton’s 

magnum opus, Philosophiae Naturalis Principia Mathematica 1687. Ptolemy also 

published minor, but not negligible, works, namely the Handy Tables, a set of 

astronomical tables which were constructed with a different epoch: Philippus 1, Toth 1, 

noon in Alexandria, which corresponds to November 12, - 323 in our reckoning (Julian 

calendar), the Optic, and the Geography. Ptolemy’s books represent the sum of the 

physical knowledge of the antiquity; it would not further develop significantly before the 

Renaissance.  
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Maimonides knew the Almagest perfectly. Maimonides’ beloved pupil R’ Joseph 

ben Judah ibn Shamun of Bagdad learned astronomy
137

 from him, and more specifically 

he read the Almagest under his guidance.
138

 The Almagest is also mentioned in the Guide 

of the Perplexed
139

 and in his commentary on the Mishna.
140

 

2. Al – Battani and his Opus Astronomicum 

   

Al-Battani lived from about 858 C.E. to 928 C.E. He is the most celebrated 

Arabic astronomer; he observed the sky from about 877 C.E. in Antioch and in ar-

Raqqah, on the Euphrates, where the Caliphs had a country castle. His main astronomical 

work was translated into Latin in many occasions, the first time in Barcelona by a team 

under the leadership of Plato of Tivoli, an Italian scholar who lived in Barcelona from 

1134 to 1145. R’ Abraham bar Hiya was one of his collaborators. It was later translated 

in 1537, in 1645, and finally into Latin in the beginning of the twentieth century by 

Nallino (under the name Opus Astronomicum) with an important astronomical 

commentary by the Italian astronomer Schiaparelli. An important innovation of this book 

is its use of trigonometry, with the use of the sine instead of the Greek chords. The book 

follows the principles of Ptolemy, and its main achievements result from the quality of 

Al-Battani’s observations, as he was one of the best astronomical observers. This allowed 

him to give very precise tables (for his time) and to improve both the numerical values of 

the different models of Ptolemy, especially the theory of the moon, and the main 

astronomical parameters, such as the length of the tropical year, the constant of the 

precession, and the obliquity of the ecliptic. The determination of the equinox of 

September 19, 882 C.E. in ar-Raqqah with a precision of half an hour
141

 was particularly 

remarkable. The epoch of his astronomical tables is, according to Nallino
142

 and 

Schiaparelli,
143

 March 1, - 311, true noon in ar-Raqqah. As established in remark 25, the 

date of the epoch is actually March 0, - 310. He calls this date the era of Dhu’l qarnayn, 

this last expression meaning (the one who has) “two horns” and alludes to Alexander the 

Great. The beginning of the Jewish Era of Contracts is Tishri 1, 3450
144

 AMI
145

 or 

September – 311, about six months before the beginning of the era of Dhu’l qarnayn.
146

 

We have seen that Maimonides is completely dependent in Hilkhot Kiddush ha-Hodesh 

on Al-Battani’s tables and data. R’ Obadia ben David already made this observation in 

his commentary on H.K.H. X: 1.
147

   

3. Abraham bar Hiya (Savasorda) and Sefer Heshbon Mahalekhot 

ha-Kokhavim 

 

Abraham bar Hiya lived in Barcelona from the second half of the eleventh century 

until the beginning of the twelfth century. Plato of Tivoli, who cites him as collaborator 

in his translations up to 1136, does not mention him in connection with a translation in 

1138. It has therefore been assumed that he died in about 1136 C.E. His most important 

and original work is his Sefer ha-Ibbur, published in Barcelona in 1122 about the Jewish 

calendar. It is assumed that Maimonides alludes to this book in his commentary on 

Mishna Erakhim II: 2. 
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The book Sefer Heshbon Mahalekhot ha-Kokhavim was published with a Spanish 

translation by J.M. Vallicrosa in 1959. It is strongly influenced by the Almagest and by 

Al-Battani’s book. Many chapters are a literal translation of Al-Battani’s book. While the 

Sefer ha-Ibbur is written in a fluent and elegant Hebrew, the Sefer Heshbon Mahalekhot 

ha-Kokhavim has all of the features of the medieval Hebrew translations from the Arabic, 

which make them difficult to read and to understand. 
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1
 Practically, they did not know the mean time, but they could imagine a regular or uniform time, 

corresponding to their astronomical tables. 
2
 Civil life and astronomical almanacs were based on true time.  

3
 In the year 1780 C.E. See Lalande (1792) p. 341. 

4
 Lalande (id.) pleaded for this transformation, which had already happened in England.  From 1816 

onward, the public clocks of Paris were regulated by the mean time. The unification of time was 

necessitated as soon as rapid means of communication developed throughout France. The use of Paris mean 

time extended to all of France due to the railway companies, which regulated the clocks of all the railway 

stations on Paris time. The adoption of the Paris mean time was already an established fact when the law of 

March 15
th

, 1891 made it obligatory. See Danjon (1986), chap. 36, pp. 72 and Ginzel III, p. 335. 
5
 Huyghens introduced the main innovation. In the beginning, a table of the equation of time was attached 

to each clock to transform the clock’s indications (mean time) into true time. 
6
 Ancient astronomers used two consecutive upper passages, and the day began at noon. 

7
 The main differences between Ptolemy and Al-Battani come from the differences of the characteristics of 

the sun’s path: eccentricity and the sun’s apogee. The maximum difference is 33m 20s for Ptolemy, while 

for Al-Battani it is 31m 12s; in modern astronomy, it is 30m 41s. The daily motion of the moon is 13°: 10’ 

35”, 03534. The motion during 33m is then 13, 1763987056*(33/60)*(1/24) =0:30°=0°:18’. 
8
 Flamsteed introduces the expression “equation of time.” He also uses the expression “equation of the 

clocks.” The older expressions were “aequatio diebus” or “prosthaphaeresis.” 
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9
 Flamsteed was the first director of the observatory of Greenwich and had the title of Astronomer Royal. 

He was still an astronomer of the ancient generation, as he preceded the Newtonian revolution. He was an 

exceptional observer. 
10

 The French astronomer Picard, who founded the “Connaissance des Temps” in 1679 and was responsible 

for it until 1684, directly introduced the new notion of Flamsteed’s equation of time. But the new equation 

of time coexisted with the old equation - which was similar to the equation of the handy Tables of Ptolemy 

- for many years, until approximately the mid-seventeenth century.  The correction from true time to mean 

time was always additive, and the equation of time was zero on November 1 through November 3. 
11

 See supra note 5. 
12

 See Smart, Textbook on Spherical Astronomy, 1980, Chapter VI, Time. 
13

 Delambre (1813) and Delambre, in his astronomical commentary on Ptolemy, Halma (1813-1816), 

affirm it without any remark. This remark can be demonstrated empirically in the tables of equation of time 

of either Ptolemy or Al-Battani, in the area of the maximum of the equation of the center. See also von 

Dalen (1994). 
14

 Therefore, even if the movement of the sun in the ecliptic was uniform (i.e. that the diurnal increase of 

the longitude Δλ was always equal) the length of the true solar day would not be uniform. Indeed, near to 

the equinoxes the arc Δλ, projected on the equator gives an increase of right ascension Δα smaller than Δλ. 

In contrast, near to the solstices, Δα is greater than Δλ. Now, as the length of the days depends on the 

length of the arcs Δα of the equator, it appears that length of the true days would not be uniform even if the 

movement of the sun was uniform on the ecliptic. 
15

 See Toomer (1984), p. 171. 
16

 This calculation is made with the time span expressed in true time, as if it was mean time. The error, due 

to this approximation, on the position of the sun is negligible. 
17

 This is the value given by Ptolemy. Al-Battani indicates 320° in his text, but in his tables it is 318.5°. 
18

 This value is too high, but it depends on the parameters adopted. It is only 7°: 48’= 31m 12s  in Al-

Battani, Nallino Vol.1, p. 49, but in his table (t2, p. 64), he gives 7°: 54’=31m 36s. 
19

  See note 17. 
20

 See Pedersen (1974) p. 127. 
21

 See Toomer (1984) p. 142. 
22

 See Pedersen (1974) p. 127. 
23

 See Rome (1943). 
24

 See note 13. In the Handy Tables and in Al-Battani, the equation of time is tabulated as a function of the 

true longitude of the sun. This equation of time corresponds to the difference between the modern equation 

of time of the final moment and that of the epoch. This table of  Ptolemy can also be considered  as a table 

of equation of time with respect to the fictitious mean time or the mean time of the Handy Tables, 

coinciding with the true time when L=210°.   
25 This is the general principle of the tables of Al-Battani. They begin on March 0 i.e. the last day of 

February. This starting date allows the table to be independent of the length of February, and we can 

directly use the date of the month for additional days. It was generally admitted that the epoch of Al-Battani 

was on March 1, 880 (Nallino, Schiaparelli, and Rome). By comparing the radices of Al-Battani with the 

calculations based on modern astronomy, Loewinger has observed, see Ajdler (1996, 125), that the epoch 

of Al-Battani must be on March 0, the last day of February. However, he wanted to justify March 1 on the 

basis that in Arab astronomy the astronomical day would be calculated, not from noon of the day until noon 

of the following day, but from noon of the preceding day until noon of the day. Thus, March 1 would in 

fact be what we now call March 0. This affirmation is based on following references: Ysraeli, Yessod 

Olam, Maamar 2, Chapter 10, fol. 26 col. 4 : veharega ha dalet and Savasorda  Mahalekhot, Gate 9, p. 62, 

line 12, in which they write that the days begin from yesterday’s noon. Nevertheless, this ingenious 

solution is not true. I have demonstrated through the comparison of the data of Al-Battani about four lunar 

eclipses and an equinox and the corresponding modern data, that Al-Battani counts his astronomical days 

from noon of the day until noon of the following day in the same way as modern astronomers did until 

1925. The conclusion is then that the epoch is on March 0, 880 C.E., and that, March 1, considered by 

Nallino, Schiaparelli, Rome, and Neugebauer is a mistake. March 0, means the last day of February, which 

has 28 or 29 days. Now what about the year of Al-Battani’s epoch mentioned by Rome, it is not – 311, as 

written by Nallino and Schiaparelli but -310, six months after the beginning of the era of Contracts. This 

can be demonstrated in two different ways: 
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                                                      A) The epoch of Maimonides is March 22, 1178 C.E. or March 22, 1489 

S.E. We have further seen that Maimonides derives his radices from the tables of Al-Battani for year 1489 

Dhu’l quarnayn + 22d  6h 50m.  Necessarily year 1489 Dhu’l quarnayn began six months after that of 

Maimonides. Indeed, if it began six months before, then we would already be in year 1490 Dhu’l quarnayn 

and Maimonides should have used the line of year 1490 in Al-Battani’s tables. 

                                                       B) A second and independent proof is given by the consideration of a 

solar eclipse.  Al-Battani writes in Vol. I, p. 56, that he observed a solar eclipse in ar-Raqqah on August 8, 

1202 Dhu’l quarnayn at 1h 7.5m p.m. 

 Now Mucke-Meeus (1983) gives for this eclipse, the date of August 8, 891. Therefore: 

                                         August 8, 891 = August 8, 1202 Dhu’l quarnayn. 

                                       August 8, -310 = August 8,  1       Dhu’l quarnayn 

          and finally        March 1, -310 =  March 1, 1     Dhu’l quarnayn.  About six months after the 

beginning of the era of Contracts of Maimonides.                             
26

 A more conservative approach, parallel to Ptolemy’s point of view, is to consider that Al-Battani also had 

an epoch for the equation of time. According to this point of view, Al-Battani would have neglected the 

difference of Aequatio Nychtemeron (the difference of equation of time) between the date corresponding to 

L=318.5°, when Aequatio Nychtemeron is 0 and the date of March 0. If we consider that the epoch of the 

equation of time is March 0, 880 C.E. (the most likely date, which is also the main epoch for his other 

data), then the true longitude Lo=344°:46’ 56” and Aequatio Nychtemeron is 3.8m (which is far from 

negligible). This is why Rome chose March 0, 311 C.E. or March 0, 1 S.E. for the epoch of the equation of 

time. At this date, Lo=335.6° and Aequatio Nychtemeron is about 2m, which could be considered 

negligible. Nevertheless, this entire approach seems highly artificial because Al-Battani does not mention 

such an approach and he never gives any information about the radices corresponding to this epoch. 
27

 For Al-Battani, the correction from true time to mean time is subtractive, so the true time is generally 

ahead, except when L is 318.5° when the mean time and the true time are equal. Therefore, the modern 

mean time is ahead with respect to the mean time of Al-Battani. If l=316°: 21’ 28”, the anomaly is 234°: 

12’ 48”, the quota of the anomaly or equation of the center is 1°: 38’ 32”, and L=318°. The right ascension 

is then 320°: 28’and the equation of time is then E= 320°:28’ − 316°: 21’ 28” =4°:06’ 32”, corresponding 

to 16.4356 m. 
28

 Maimonides never used the title “Yad ha-Hazaka.” It postdates the books and is polemical.  
29

 Apparently, Maimonides considered the Talmudic discussion secondary and exhausting. His position 

loses the richness of the original work and constitutes an intellectual impoverishment. Some rabbis (mainly 

in Spain), who judged cases by only consulting the codes and neglecting the Talmudic sources, were 

criticized. 
30

 In his commentary on chap.12:8, he mentions the year 1341 C.E. His definitions of the fourth elongation 

and the arc of vision are incorrect. He is the first to present evidence of the dependence of Maimonides on 

Al-Battani (see his commentary on chap. 12,1). The importance of Al-Battani in ancient Jewish astronomy 

had already been recognized earlier. Al-Battani is already mentioned by R’ Judah ha-Levi in Sefer ha-

Kuzari, book 4, chap 29, for the justification of the Tekufat R’ Adda, and in Yessod  Olam, book IV, chap 

7, p. 12, col 1, to demonstrate that the Jewish Molad corresponds to the mean conjunction at the central 

meridian (Tibbur ha Aretz), situated 24° east of Jerusalem. 
31

 Levi ben Habib (1483-1545) is the first to give a correct, but nevertheless intricate, definition of the four 

elongations and the arc the vision. At the end of chap.17, he mentions Abraham Zacut, the Spanish Royal 

Astronomer, whose tables in the Canon (The Great Composition) influenced him. 
32

 Mordehai Jaffe (1530-1612) follows the commentary of Levi ben Habib. 
33

 Tekhunat ha-Shamaym, was printed in Amsterdam, by Moses of Tiktin, who bought in an auction a 

manuscript of Hanover’s lectures intended for his pupils and edited it with some additional notes. In the 

introduction to his second book (see note 7), Hanover mentions that this book was printed without his 

authorization. 
34

 It consists of two parts. The first part includes tables for the calculation of the visibility according to the 

algorithm of Maimonides, and the second is a set of tables based on Newton’s theory, for the calculation of 

conjunctions, equinoxes, and eclipses. 
35

 Among his contributions: 
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 All the visibility’s calculations of Maimonides’ algorithm are performed under the assumption that 

the double elongation is 31°. 

 The tables of parallax of Maimonides are calculated 20m after sunset with a double elongation of 

31°.   

 A correct interpretation of the visibility limits.  

 The difference between mean conjunction and Molad is put into evidence. 

 The difference between the mean synodical lunation and the conventional month of 29-12-793 is 

emphasized. 
36

 Although his contribution is remarkable, it should be noted that many of his achievements seem very 

similar to those of Raphael Levi of Hanover. Although he never mentions him, it is difficult to believe that 

he did not know about his printed books – the book Naavah Kodesh (1786), Berlin, written by Simon 

Weltch, the pupil of R’ I.B. Bernstein (1747-1802), Hanover’s own pupil, or the book Yrat Shamayim, by 

Meir Furth, (1820), Dessau, devoted to the explanation of  Luhot ha Ibbur, Hanover (1756-1757). 
37

 The translation of the Hebrew date is (as always) ambiguous. The fifth Jewish day of the week begins on 

Wednesday evening at 18 h. The epoch is then at the beginning of the fifth day, which is still the civil 

Wednesday. Apparently, this point has escaped Neugebauer (1949). 
38

 This date, as all the dates in this paper preceeding October 4, 1582 C.E. is a Julian date. In the twelfth 

and thirteenth century, the difference between the Julian calendar and the fictitious Gregorian calendar 

amounts to 7 days.  
39

 18h is not far from sunset, because it is close to the equinox. The moment of the vision is about 20m after 

sunset (H.K.H 14, 6). 18h 20m is then not far from the time of vision on the same day. We thus explain 

Raphael Levi Hanover’s choice of 18h 20m. See Hanover (1756-1757) book 2, p. 20, and the first example 

in Hanover (1756), chap 89, p. 30a and table p. 34a. Apparently, he does not account for the equation of 

time, although he is fully aware of it. In his manuscript Sefer ha-Tehunah about spherical astronomy, he 

details the relation E = C + . He seems to ignore that the mean time of Al-Battani is different from our 

modern mean time. 
40

 On the basis of the coordinates of the sun given by Maimonides, it appears that sunset, according to 

modern astronomy, occurred at 18h 13m Jerusalem true time. Sunset occurs when the upper limb of the sun 

is just at the horizon when accounting for refraction. The moment of vision would then be at 18h 33m true 

time. 
41

 See Neugebauer (1949) p. 342. This reading is the literal interpretation of Maimonides’ text; Maimonides 

fixes the epoch at the beginning of the night. See Hilkhot Kiddush ha-Hodesh, 11:16; 12:2; 12:4 (Yale 

Judaica Series, Volume XI, 1967), 14:4; 14:5; 16:4; 16:19. 
42

 See Neugebauer (1949) p. 344. 
43

 See Neugebauer (1975) p. 125. 
44

 See Wisenberg, p. 579. 
45

 See H.K.H. 14: 6. Maimonides writes “about twenty minutes.” 
46

 In modern almanacs, sunrise and sunset are calculated when the upper limb of the sun is at the horizon, 

accounting for the refraction of 0°: 34’; the altitude of the sun’s center is then −0.85°. Until the eighteenth 

century, sunrise and sunset were calculated when the sun’s center was at the horizon, accounting for a 

refraction of 0°: 32’; the altitude of the center of the sun was then −0.5333°. Even today, in the “Annuaire 

du Bureau des Longitudes,” sunrise and sunset are still calculated according to this definition, but 

accounting for a refraction of 0°: 34’ and an altitude of the sun’s center of −0.5667°. 
47

 The basic epoch is on March 0, and the epoch of Maimonides is on March 22. 
48

 Nallino p. 41. 
49

 Nallino p. 54. 
50

 The time in ar-Raqqah is 27m ahead of Jerusalem. 
51

 See Neugebauer (1949) p. 344. 
52

 See H.K.H. 14: 6. This is the only place where Maimonides mentions that the moment of vision is about 

twenty minutes after sunset. Why does he say “about 20m”? The answer is probably that the vision requires 

a certain degree of darkness. At the equinox, 20m after apparent sunset represents a depression of the sun 

of 5.1°. In summer or in winter, the moment of vision must correspond to the same degree of darkness of 

the sky and to the same depression of the sun. This is the reason for a slight variation of the twenty minutes 

throughout the year.  In the following table, all times are expressed in true time. 
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 Geometrical 

Sunset 

Apparent Sunset Moment of Vision Delay 

Equinox 18h 18h 04m 18h 24m 20m 

Summer Solstice 19h 02m 31s 19h 07m 03s 19h 30m 11s 23m 

Winter Solstice 16h 57m 29s 17h 02m 17h 24m 15s 22m 

 
53

 Indeed, Maimonides counts from the epoch a whole number of days, either 29 or 30 days, taking into 

account the variation of the length of the days with respect to the seasons to reach the moment of vision. 

That means that the epoch must also have been a moment of vision. 
54

 Therefore, 18h 20m must be understood in Al-Battani mean time and corresponds to 18h 03m 30s of our 

modern mean time. It does not represent 20m after 18h, mean sunset near to the equinox. This position is 

untenable! 
55

 H.K.H. 12 :4. 
56

 H.K.H. 12 :5. 
57

 H.K.H. 14 :4. 
58

 H.K.H. 14 :4. 
59

 H.K.H. 16 :3. 
60

 i.e. the altitude of the sun’s center. 
61

 See point 2, infra note 71. 
62

 See Ajdler (1996) p. 116. 
63

 The declination is given by sin = cos sin sin= 23°: 35’,  = 9°: 00’ 17” and  = 0. 

We find  = 3.5902°. The required hour angle is given by cos H= (cos 91°- sin * sin)/ (coscos). 

The hour angle is then 93,° corresponding to 18h 13m 43s. 

What about the value of see Nallino I, pp. 12 and 160. 
64

 It is exactly 9°: 00’ 17”. 
65

 This expression is synonymous with the equation of the days. 
66

 See point 2, infra note 71. 
67

 I have used the facsimile of the Strasbourg Geographia of 1513 C.E. 
68

 Maimonides indeed follows Ptolemy when he fixes the longitude of Jerusalem at 24° in H.K.H. 11: 17. 

In H.K.H, he works with respect of the principal meridian, which was considered to be in the middle of the 

inhabited countries and was called the center of the world. The longitude of this meridian is 90°. Jerusalem 

has a longitude of 66° east with respect to the origin meridian (longitude 0°) crossing the Atlantic Ocean. 

With respect to the meridian center of the world, the longitude of Jerusalem is 24° west. 
69

 On the map (quarta asiae tabula), we find Nicephorium on the Euphrates, corresponding without any 

doubt to ar-Raqqah. It must be added that this reading is not absolutely sure, as there is another possible 

reading for the longitude of Nicephorium: 73°: 1/12. Ultimately, this gives no significant difference. 
70

 Sunset mentioned in H.K.H. 14:6 is exactly the modern apparent sunset, when the sun disappears at the 

horizon and the upper limb of the sun is at the horizon, accounting for the refraction; according to modern 

astronomy, the depression of the sun is then  0°: 51’= 0.85°, but Maimonides used a sun’s depression of 1°. 

This definition of sunset and apparent sunset is in contradiction with the general definition of sunset and 

apparent sunset in ancient astronomy, according to which sunset is the moment when the center of the sun 

is at the horizon and apparent sunset is the moment when the center of the sun is apparently at the horizon. 

At this moment, the center of the sun has a depression of 0°: 34’. Nevertheless, the value adopted for the 

refraction was different in ancient astronomy. In the eighteenth century, they still used a refraction of 0°: 

32’. This value can be found in the “Connaissance des Temps” 1721, p. 125. Similarly, in a table intended 

for Sabbath and daily prayer times, printed in 1766, Raphael Levi Hanover (the first – or probably the 

second after Joseph Solomon Delmedigo – to define the times of Jewish life on a scientific basis and to 

define the time of the end of Sabbath on the basis of a solar depression), considers sunrise and sunset when 

the center of the sun is apparently at the horizon. 
71

 One can raise the following objections: 1. on what basis do we try to make the distinction in the 

interpretation of Maimonides and the explanation of his epoch between true sunset and apparent sunset, 

when the classical astronomical books used by Maimonides, the Almagest, and the composition of Al-
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Battani, never mention the apparent sunset?  2. On which basis have we chosen a depression of 1° for the 

apparent sunset according to Maimonides? 3. Were the ancient astronomers able to measure the difference 

between geometrical sunset (altitude=0°) and the apparent sunset (upper limb of the sun disappearing at the 

horizon)?  

1. It is certain that Maimonides, in his non-astronomical works, always refers to the apparent sunset, as 

observed by laymen. The definition of halakhic sunset is also ascribed by Maimonides’ son, R’ 

Abraham, as the apparent sunset (Responsa 96 of R’ Moses Alashkar). 

On the day of the epoch, with the radices of Maimonides, we have following data: 

Geometrical sunset  18h 09m true time; 17h 57m AJMT; 18h 13.5m Modern MT 

Geometrical sunset + 20m 18h 29m true time; 18h 17m AJMT; 18h 33.5m Modern MT 

App. sunset (-.85°) +20m 18h 33m true time; 18h 21m AJMT; 18h 37.5m Modern MT 

App .sunset (-1°) +20m 18h 34m true time; 18h 22m AJMT; 18h 38.5m Modern MT 

Maimonides has adopted his epoch at 18h 50m – 27m= 18h 23m AJMT. If he had geometrical 

sunset in mind, the epoch would have been 18h 17m AJMT. It is certainly not quite by chance that 

he refers to a moment near to apparent sunset, removed by 6m from geometrical sunset. 

We can further assert that he certainly did not have 18h; 20m AJMT, 20m after mean sunset, in 

mind, because our mean sunset of 18h happens at 17h; 43.5m AJMT. Furthermore this notion was 

unknown to them, as they ignored our equatorial mean sun; their mean sunset was at 18h true time. 

2. There are good reasons to believe that Maimonides and other astronomers of his time considered 

that apparent sunset corresponded to a depression of 1°. Indeed, in his commentary to Berakhot I.1, 

Maimonides mentions that astronomical dawn (at the equator) has duration of 72m and that the 

thickness of the atmosphere is 51 miles (the altitude of the surface limiting the atmosphere, which 

reflects the light of the sun). Thanks to these two values, Delmedigo was already able to establish 

the dependence of Maimonides on the Book of Dawn (erroneously ascribed to Alhazen; this book 

has been translated to English: Goldstein (1985) and the 14
th
 century Hebrew manuscript was 

published in Katz (1986) and to correct the altitude of 51miles to 52 miles. We are dealing with the 

same miles as those mentioned in Maimonides’ introduction to treatise Zeraim, of which he says that 

the equator has a length of 24,000 miles. For more details on this Arabic Book of Dawn, see Katz 

(1986) and Katz and Weiss (1996). According to the theory developed in the Book of Dawn, the 

atmosphere’s thickness depends on the sun’s depression at the end of the astronomical dawn or 

twilight. It can be proved that a depression of 19° corresponds to an altitude of 51.8 miles, while a 

depression of 18.85° corresponds to 51 miles and a depression of 18° to 46 miles. We could deduce 

from Maimonides’ given value of 51 miles that he considered a depression of 0.85° at apparent 

sunset, as in modern astronomy, but this would be naïve. In reality, Maimonides follows the Arabic 

treatise and considers a depression of 19° at the end of the astronomic twilight and an altitude of 

51.8 miles for the atmosphere. The value of 51 miles has been rounded off by truncation. Because 

Maimonides considers the length of the astronomical dawn or twilight to be 72m, corresponding to 

18°, his astronomical twilight necessarily begins when the solar depression is 1°, at apparent sunset. 

It is then very likely to consider that his apparent sunset corresponds to a depression of 1°. The 

difference between apparent sunset and geometrical sunset is then about 5 minutes instead of 4.  

Katz and Weiss (1996) p. 9 arrives at the same conclusion.   

3. The ancient astronomers, Archimedes, Ptolemy, and especially Alhazen in his book on optics (see 

Houzeau (1882) p. 299) were aware, at least in principle, of the phenomenon of astronomical 

refraction and its consequences: enlarging of the heavenly body at the horizon and inflection of the 

rays in the atmosphere. Stars under the horizon seem to be above it. These astronomers could 

appraise the phenomenon only by the measure of the short time span between the theoretical 

geometrical sunset, transformed into true time, and the apparent sunset. The ancient astronomers, 

when they had a good water clock, could measure spans of time with good precision. But this 

phenomenon can be measured even with an imprecise clock. Assume that the clock loses 16m per 

day. The direct measure on the day of the equinox of the difference between half an apparent day of 

6h: 4m and 6h will give 0. But one quarter of the difference between the length of apparent day and 

apparent night will give .25 * (11h: 59m 55s – 11h: 44m 05s) = .25 * (15m 50s) = 3m 57.5s. 

Furthermore, the sum of day + night is 23h: 44m, which gives us the possibility to correct and 

improve the results. In other words, even with an imprecise clock, on the day of equinox it is 

possible to measure the phenomenon with precision by comparative measures and derive the 
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correspondent depression of the sun. The inaccuracy of the clocks can therefore be eliminated. The 

true problems are a) that the true equinox does not fall exactly at 6h (or 18h) and therefore the night 

and day after (or before) are not exactly equal. b) An error of 12h (and even 14h) in the 

determination of the equinox was common (see Ajdler (1996) p. 179). Therefore, the            

operation is somewhat more complicated. One must determine the minimum of the difference (day- 

neighboring night) on the supposed day of the equinox and on the days before and after. Even this         

minimum can still have an error, which can reach about 4m according to the exact moment of the 

equinox, leading to an error of 1m in the appreciation of the difference between geometrical and 

apparent sunset. In fact, a depression of 1° in place of .85° of the sun at apparent sunset            

represents an error of about 1m in the appreciation of this difference of time (5m instead of 4m).            

A good knowledge of this phenomenon requires observations around more than one equinox. 
72

 Raphael Levi Hanover, in the different numerical examples developed in his Luhot ha-Ibbur, neglects 

this problem and makes his calculation of vision twenty minutes after geometrical sunset when the 

depression of the sun is zero. On the contrary, in his table for religious objectives, he considers the sunset 

when its depression is 0°: 32’ (center of the sun at the horizon, taking into account a refraction of 0°: 32’). 
73

 Why, indeed, did Maimonides take the equation of time into consideration in the calculation of the epoch 

and the radices and why did he neglect it in his algorithm of the calculation of the arc of vision? When 

calculating the epoch and the radices, Maimonides follows the instructions given by Al-Battani. This is 

particularly justified as he gives his radices with a (probably illusory) precision of the angular second. If we 

consider that the longitude of the moon increases in 24h with 13°; 10’ 35.03” and therefore in one minute 

with 0.00915° or 0°; 00’ 33”, it appears that when the epoch is determined with a precision of 1 minute, the 

longitude of the moon is known with a precision of only half an angular minute. Hence, we understand that 

Maimonides must calculate his epoch with the greatest precision, at least to the minute, and therefore he 

must use the equation of time. On the contrary, in Maimonides’ algorithm in HKH 14:6, he calculates a 

correction for the moon’s elongation, to account for the variation of the length of daylight in Jerusalem. It 

varies during the year between 10 and 14 hours, and consequently, sunset is delayed by about one hour at 

the summer solstice and is advanced by about one hour at the winter solstice. During one hour, the mean 

motion of the moon is about 0.5°; therefore, if we compute the mean position of the moon, twenty minutes 

after mean sunset, we must apply a correction that depends on the seasons and ranges from −0.5° to +0.5°. 

In this simplified algorithm, Maimonides replaces the continuous function correction by a step function 

correction. By doing that, he often neglects delays up to 15 and even 18 minutes. We can then understand 

that he neglected the effect of the equation of time, of about the same order of size, although the two errors 

can be cumulative. Indeed, at the epoch, the modern equation of time is 4.5 minutes and therefore the mean 

time of the algorithm, coinciding with the true time at the epoch, is close to our modern mean time; the 

error due to the negligence of the Aequatio Nychtemeron (equation of time in the Latin translation of Al-

Battani) ranges from +13m to −18m (in place of 0 to −31m). The main reason of this simplification is that 

accounting for the Equation of Time would have complicated this algorithm so much that it would not have 

been as useful.      
74

 This opinion is subjective, but when we compare the calculations of the epoch and the radices made by 

Maimonides with those of Abraham ibn Ezra or with those of Abraham bar Hiya (also called Savasorda), 

using parameters of different origins and presenting a lack of homogeneity, we observe much more 

precision in Maimonides’ calculations.  In his Sefer ha-Ibbur, Ibn Ezra indicates that true equinox was on 

Friday, March 14, 1147 C.E. at seven hours in the day (probably seven hours after sunrise), that is to say 

13h true time of Verona. The precision of this equinox is clearly less than the precision of Maimonides’ 

calculation of the equinox. 
75

 He has correctly fixed it on March 0. He lived in Fostat, and he did not use the Julian calendar. 
76

 He may have used for this purpose the Sefer ha-Ibbur written by Abraham bar Hiya in 1123 (see the 

introduction written by the editor Filipowski in 1851). Maimonides mentions this book without naming it 

explicitly. Indeed, in his commentary on the Mishnah  Arahim, 2:2, he writes: 
     וכבר חיבר זולתנו בספרד בזה העניין וזולתו מן המין הזה חיבור נאה מאוד שאין בינו

...                                    ובין החיבורין שחברו במזרח בענייני העיבור דומיא בשום צד                                  
                                                                                              

77
 We already have in mind the following references: 

Hilkhot Kiddush ha-Hodesh 14:6. 
....                                          הוא אמצא הירח לאחר שקיעת החמה בכמו שליש שעה  
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                                                                 . וזה הוא הנקרא אמצא הירח לשעת הראיה

 

Hilkhot Kiddush ha-Hodesh 11:16. 
....לפיכך עשינו העיקר שממנו מתחילין לעולם לחשבון זה מתחילת ליל חמישי שיומו  

 

 There are also other references: 

Hilkhot Shabbat 5:4. 
....                       הוא הזמן הנקרא בין השמשות בכל מקום. עד שיראו שלשה כוכבים בינוניים משתשקע החמה               

                                                                                                     
Hilkhot Terumot 7:2. 

.                           יש שעה אחר שקיעת החמהויצאו שלשה כוכבים בינוניים וזה העת כמו של  

 

In Maimonides’ commentary, on the Mishnah Shabbat, 2:7: 
,              נקרא יום,ודע כי אחר ביאת השמש עד שיראה כוכב מן הכוכבים הבינוניים בגדולה  

יראו שלשה               ומשיראו שנים עד ש, ושיראה כוכב אחד עד שיראו שנים הוא גם כן יום  
הוא לילה בלי שיראו שלשהכן בין השמשות ומהוא ז  ספק                                                  

                                                       
 

See a variant lecture in the commentary of Levi ben Habib on H.K.H. 2:9 and his explanation. See also  

Maimonides’s commentary on Mishnah Sabbath edited by R’ Joseph Kappah.  

In Hilkhot Kiddush ha-Hodesh 2:9: 
...                       למחר מושיבין שני דינים, ואם ראוהו בליל שלשים אחר שיצאו שני כוכבים  

 
Also in Hilkhot Kiddush ha-Hodesh, with the object of the sanctification of the new moon, the beginning of 

the night is fixed by the appearance of three stars of middle size, but here, the process of sanctification must 

be completed before the appearance of the second star, marking the beginning of the religious twilight. For 

the two contradictory definitions of the religious twilight in Sabbath (between sunset and three stars) and in 

H.K.H. (between two and three stars) according to contradictory Talmudic opinions, see the commentary of 

Levi ben Habib mentioned above. In Hilkhot Kiddush ha-Hodesh, Maimonides defines the epoch as the 

beginning of the night and the moment of vision as twenty minutes after sunset. We further demonstrate 

that the epoch was about twenty minutes after apparent sunset. We can conclude that he considers the night 

to begin about twenty minutes after apparent sunset.  

In the laws of Sabbath, he defines the religious twilight as beginning at sunset – hence apparent sunset – 

and ending at the beginning of the night, defined by the appearance of three stars of middle size. Of course, 

the beginning of the night must be the same in Hilkhot Kiddush ha-Hodesh and in Hilkhot Shabbat, so we 

can infer that this moment is about twenty minutes after apparent sunset. 

We receive confirmation in the laws of Teruma, where Maimonides explicitly specifies that the moment of 

appearance of three stars of middle size (in Israel) is about twenty minutes after sunset. R’ Moses Al-

Ashkar, in his responsum 96, about the circumcision of a boy born on Friday evening, mentions the opinion 

of R’ Abraham, the son of Maimonides, according to whom the religious twilight of Sabbath begins after 

the complete disappearance of the sun (in other words, at apparent sunset), and it was thus considered to 

have surely been the opinion of his father. 

We demonstrate by calculation, this is not a customary method in rabbinical studies, that the epoch, which 

is fixed at the beginning of the night, occurs (near the equinox) twenty minutes after apparent sunset, fully 

confirming the former judgment about the origin of the opinion of Maimonides’ sun. It must be noted that 

there is no unanimity in the Hibbur, in the laws of Teruma, about the passage fixing the appearance of three 

stars of middle size twenty minutes after sunset; some consider that it is a later interpolation derived from 

the parallel passage in Semag, written by R’ Moses of Coucy (thirteenth century), who was strongly 

influenced by Maimonides. But it must be noted that the same passage is found verbatim in Sefer ha-

Hinukh (Barcelona, anonymous, beginning of the fourteenth century) about the 300
th

 commandment: “that 

an unclean priest should not eat Teruma,” Ed. Shavel, p. 384. Therefore, the authenticity of this short 

passage is indisputable, but in any case, the preceding astronomical demonstration must remove any doubt 

on the question. 
78

 I express my thanks to Dr. Benezri, a specialist in classical Arabic.  
79

 i.e. the last day of the year before. 
80

 He is also called Savasorda. 
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81

 See the introduction of Filipowsi in Abraham bar Hiya (1852). 
82

 There is a complete edition in Spanish titled Libro del calculo de los moviementos de los astros 

containing a Spanish translation and the astronomical tables by Jose Millas Vallicrosa of Barcelona 

(1959).I express my thanks to Eng. Yakov Loewinger for sending me a copy of this book. We had 

interesting discussions about the astronomical tables in this book. 
83

 Concerning the interest of the study of the old Jewish texts, there is another interesting example. Al-

Battani (Nallino, Vol.1, p. 57) describes the eclipse, of July 23, 883 C.E., which occurred a little later than 

eight equinoctial hours in the afternoon. Using the tables of Al-Battani, Schiaparelli has shown that this 

moment was 8h 07m in the afternoon. In Yessod Olam, book IV, chap 7, p. 12, col. 1, Ysraeli refers to this 

eclipse and writes that Al-Battani observed it in ar-Raqqah 8h and 6m after noon. Unfortunately, there are 

many misprints in this edition of Yessod Olam. 
84

 In the book of Millas, it says “frac,” which we demonstrate are in fact seconds. 
85

 In the tables of the Spanish edition of Millas, the text is 13m 200 frac, but this is a misprint or a copying 

error. 
86

 The difference is in fact 3.33s; three * 3.33s is transformed into 3s+3s+4s. We deduce also that the 

indication “frac” on the last column right is expressed in seconds. 
87

 See note 84. 
88

 See below. The equation of time is 25.86m. Therefore, in Jerusalem, the Molad occurs at about 12h 14m 

ABMT or 12h 14m+26m= 12h 40m Jerusalem true time. 
89

 See remark 25. 
90

 See Nallino 2: p. 84 
91

 See Nallino 2: p. 72. 
92

 i.e. equation of time. 
93

 Abraham ibn Zarkali is also known under the Latin name of Arzachel. He lived from about 1029 until 

about 1087 C.E. He published the Toledo Tables which served as a basis for the Alphonsine Tables. Ysraeli 

mentions one of his observations in Yessod Olam IV: 15, namely the autumnal equinox of year 1076 C.E. 
94

 Ptolemy adopted the value of 29-12-793 for the length of the moon’s lunation. In his sexagesimal 

notation, this value is expressed by 29d: 31, 50, 8, 20. The value obtained by Ptolemy, from his comparison 

with the observations of Hipparchus, is 29d: 31, 50, 8, 9, which is slightly better. The discrepancy is about 

1/12 s, and Pedersen (1974) notes (p. 162) that Copernicus already commented upon it. He did not know, of 

course, that Ysraeli had already noted this discrepancy nearly three centuries before; see Ysraeli, book III, 

chap12, p. 49, col.1. 
95

 The difference is only 1/12 s, but in about 880 C.E. – the period of the observations of Al-Battani –  

when the difference between the conjunctions of Al-Battani and Ptolemy is about one half hour, this small 

difference of 1/12 s contributes more than ten minutes. 
96

.ויומא דתלתין שני, והאיכא יומא דשעי, בינאמתקיף לה ר   

“Ravina has objected: but there is the day of the hours, and the day of thirty years.” 

The day of the hours is the day accumulated by the 40m in excess on 29d 12h after three years of 12 

months. The day of thirty years is the day accumulated by the halakim, the difference between 29d 12h 

44m, or 29-12-792, and 29d 12h 40m, or 29-12-720, after thirty years.  
97

 When the lunation was fixed to 29d 12h 40m in one year of 12 lunar months, these 40 m amount to 8h, 

and after 3 years they amount to 1 day, which was called the day of the hour.  
98

 When the lunation was fixed to 29d 12h 44m, the additional 4 m or 72 halakim after 30 years of 12 

months amount to one day, called the day of 30 years.  
99

 At this time, the use of Halakim, noted in this paper as “p,” was not yet necessary because 792p = 

11/15h. 
100

עשרין וחד שעין בציר מנהון שית מאה, והון שוין באיקרון, ית תרין נהוריא רברביא' ועבד ה   
                                       .                                                                   ותרין שובעין חולקי שעתא

“And the Lord created the two great luminaries, and they were of equal glory, twenty-one hours less 672 

parts of the hour.” 
101

 i.e. Wednesday at 2h 408p pm. 
102

 R’ Moses Provincial already invoked this evidence in his hassagot (critical scholia) at the end of Meor 

Enayim by R’ Azariah de Rossi. 
103

 See Jaffe (1931) p. 98. 
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104

 See Shinan (1985). He argues that Targum Jonathan was composed no later than 750 C.E. However, 

Hayward (1991) has contested his argument. 
105

 See Jaffe (1931) p. 97. 
106

 See Stern (2001) p. 205. 
107

 For details, see Stern (2001) pp. 195-96, 264, and 277. 
108

 For details, see Stern (2001) p. 264. 
109

 We have Molad Zaken if the Molad Tishri is at 18h (noon) or later, and Rosh Hodesh cannot be fixed on 

this day, so it is delayed by one or two days. 
110

  The other calendrical rules have a clear purpose, but the rationale of the rule of Molad Zaken, which is 

supposed to be connected to Rosh Hashannah 20b, is very obscure. It must be considered that a 

modification of calendrical rules is easier when the decision is limited to a restricted circle. If, according to 

Stern, the Babylonians were aware of the element of the calendar, such a modification becomes much more 

difficult. 
111

  Beside the fact that the rule of Molad Zaken was not yet in use, Stern must admit that there was a 

difference of 642p between the Molad of Babylonia and the Molad of Palestine, see (Stern 2001) p. 270. 

Stern must certainly admit that the rule of Molad Zaken was introduced before 847 C.E. Otherwise, we 

should have a difference between both communities, similar to the difference in 922 C.E. The Molad of 

Tishri 4608 AMI was on 4-0-17 in Babylonia and 3-23-455 in Palestine. Rosh Hashannah must occur on  

Thursday in Babylonia and on Tuesday in Palestine. A similar problem must have happened in 4505 AMI 

(Molad 0-0-615) and 4509 (Molad 5-0-592). This obliges Stern to admit that in 748 C.E. the Molad was not 

yet the same as today or that in 748 C.E., the Molad was still unknown in Babylonia. Stern also explains 

the occurrence of Rosh Hashannah 506 C.E. on Sunday (according to the Epistle of Sherira Gaon) by the 

absence of the rule of Molad Zaken (Molad 1-22-983). 
112

 About the Arabic translations of the Almagest that appeared in this period, see Pedersen (1974), p. 15. 
113

 See Ajdler (1996) p. 223, the two “tables of the four gates” for Tishri or for the preceding Nissan. This 

time is the limit for the application of Molad Zaken to the next Tishri. 
114

 This Molad is based on the indications of the Braita of Samuel. The conjunction was on Tuesday, 

September 17, 776 C.E. at 18h while the (mean) equinox was the same day at 16h. It is uncertain if they 

already knew about mean time, as they probably did not have access to Ptolemy. These times are then 

probably expressed in true time. According to Meeus (1991), the true equinox was on September 19, 776 

C.E., at 6h 30m U.T. and the mean equinox was then in Jerusalem, at about September 17 ,776 C.E., at 8h 

50m in Jerusalem, which is seven hours before the time given by the Braita. This result is a very creditable 

one, much more precise than the calculations of Maimonides and  ibn Ezra (see note 74). 
115

  This information about the coincidence of the conjunction of the moon in Tishri and the mean equinox 

is given in the beginning of the Braita of Samuel. Jaffe (1931) p. 66 shows that this later interpolation was 

probably unknown to Abraham bar Hiya (Sefer ha Ibbur, p. 36 ed. Filipowski) and to Ibn Ezra 

(commentary to Exodus, XII: 2), who both quote the beginning of the chapter V of the Braita.  

Fortunately, this interpolation existed in the manuscript used by the first editor of the Braita of Samuel. 
116

 Regarding the conjunction, there are the following results in Jerusalem, Almagest mean time: 

mean conjunction of Ptolemy:  20h 55m                      

Modern Molad:    21h 20m 

Mean conjunction Al-Battani:  20h 26 m 

Modern mean conjunction:        20h 36 m 

Braita of Samuel:   18h 

This table provides a good indication of the relationship between these different values. 
117

In contrast, according to the explanations of Stern, the motivation of the Exilarch’s letter, with its 

insistence on the necessity of unity in the calendar of the Jewish communities and the proclamation of the 

preeminence of Palestine in the field of the calendar, remains unexplained. 
118

 Slonimski had already explained the origin of the Molad Veyad 6-12 of Tishri AMII, and he had also 

observed that the Molad Nissan of the year 3014 AMI is a rounded figure, i.e., 7-12-540. 
119

 Our Molad is the mean conjunction of Ptolemy, to which 850p are added. By adding 850p to the first 

conjunction of Ptolemy, we get 7-12-540, that is to say, Sunday, 6h 30m. 
120

 See Stern (2001) p. 268 The Babylonians used the “Four Gates Table” based on Tishri. The Palestinians 

used a less elaborated algorithm based on Nissan. Remark: In order to know the length and the other 

characteristics of a Jewish year we must calculate the Molad of Tishri and the day of Tishri 1 of both this 
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year and the following year (see H.K.H. VIII: 7). The Babylonians had found a more elaborated algorithm 

allowing to know the characteristics of a Jewish year by the knowledge of the Molad of Tishri of the same 

year and its rank in a 19 year cycle. 
121

 My friend Eng. Yakov Loewinger from Tel Aviv, who studied the problem of the equation of time at the 

same time as me, propounds another explanation about the two Moladot. The Molad Veyad, year 1 AMII, 

would be the conjunction of Ptolemy, translated to Tishri, AMII, and expressed in true time. The Molad 

Dat ט''ד (Wednesday at 3 a.m.) of Nissan AMI of the Palestinians would correspond to the conjunction of 

Al-Battani, translated to Tishri AMI and expressed in true time. I have many objections to this explanation: 

First, the ancient people knew two systems of mean time - the system of Al-Battani and Almagest, and the 

system of Handy tables. The former gives a subtractive correction and the latter gives an additive correction 

from true time to mean time. No other mean time has ever been described. Loewinger would create a mean 

time for the Babylonians coinciding with true time at Veyad, and he would create a mean time for the 

Palestinians coinciding with true time at Beharad. The corrections from true time to mean time would in 

both cases be positive or negative. Second, they did not yet use the Molad Beharad. They commonly used 

the era of the Contracts and they knew the era of Veyad, but they did not know of the era of Beharad. See 

the opinions of Saadia Gaon and Hai Gaon in Jaffe, Chap.13. Third, the Palestinians referred exclusively to 

Nissan and not to Tishri, and they probably ignored Beharad. Fourth, it is not at all certain that Ben Meir 

was already aware of the work and observations of Al-Battani. Finally, in the discussion between Ben Meir 

and Saadia Gaon it appears clearly that Ben Meir was the carrier of a tradition, which he could not explain 

anymore. If he was the initiator of this revolution, he would have adopted a different position. A slight 

adaptation of this theory does not change the criticism. 
122

 Ysraeli was already aware of the discrepancy between the Molad and the conjunction of Al- Battani. He 

therefore defended the theory that the Jewish Molad was defined for the Tibbur, the meridian of 90° 

longitude, 24° east of Jerusalem. 
123

  According to my explanation, the letter of the Resh Galuta is indirectly connected to the Ben Meir 

controversy. The Exilarch’s letter would be the evidence of uneasiness between Babylonia and Palestine. 

The modern Molad was adopted at a consecutive common meeting. Differences of opinions led to a 

difference of 642p between their Moladot. The origin of this difference was later forgotten, but it was the 

cause of the clash of 922 C.E. The letter of the Resh Galuta would then be indirect evidence of the 

requirement of Babylonia to be associated with the decisions of the calendar. 
124

 To summarize both positions:                                                        

a)   Stern, (with some personal additions) 

- The modern Molad  was already known for a long time by both Palestinians and 

Babylonians. Nevertheless, the Molad of the Palestinians was the Molad of the 

Babylonians (our modern Molad) minus 642p. The Molad Zaken was not in use until the 

second half of the ninth century. According to this theory, it must be accepted that the 

Molad Zaken was introduced before 847 C.E. and that the Babylonians were not aware 

of the Molad before 748 C.E. 

The main difficulties of this position are: 

- What is the motivation of this letter? 

- What is the meaning of its plea for the unity of the calendar of both communities? 

- What was the reason of the introduction of the rule of Molad Zaken around 840-845 

C.E.? (with the persistence of the difference of 642p between their Moladot, they must 

have been aware that a difference of Keviya was to occur between them in 847 C.E.) 

- What is the significance of the acceptance by the Exilarch of the preeminence of 

Palestine in calendar matters? 

b)   My position follows Jaffe more or less faithfully about the big trends of the evolution of the Molad,          

but I completely reinterpret the Exilarch’s letter. 

- The rules of the calendar were fixed since the fourth century. 

- The last rule, to be introduced in the calendar, was the dehiya (postponement) A from 

ADU, in about 640 C.E. (See Jaffe (1931) p. 53). ADU corresponds to ו''אד  and means 

that Rosh Hashannah may not fall on Sunday, Wednesday and Friday, see H.K.H. VII. 

- The Exilarch did not yet know the Molad with precision in 835-836 C.E. 

- The letter of the Resh Galuta answers critics against the Keviya (fixation) of Palestine 

and still recognizes the preeminence of Palestine in calendar matters. 
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- The Molad used by the Palestinians has undergone an evolution, especially in 776 C.E. 

and in about 840 C.E. 

- Before 840 C.E., the Molad was about 3h 20m less than our modern Molad and before 

776 C.E., the Molad was about 5h less than our modern Molad. This difference explains 

why the rule of Molad Zaken did not play a role in 835 C.E. or in 506 C.E. 

The main difficulty of my position is that some scholars cannot accept that the Palestinian specialists of the 

calendar did not know the table of conjunctions of Ptolemy before the translation of the Almagest into 

Arabic in Bagdad in about 840 C.E. Nevertheless, the late redaction of such books as the Braita of Samuel 

and Pirquei de Rabbi Eliezer, based on much more primitive data, seems to prove that the Almagest was 

not yet known in the Jewish calendar circle. From the other side, the work of the Muslim astronomer Al-

Khwarizmi on the Jewish calendar (about 823 C.E. See Stern (2001) pp. 184 and 264) does not mention the 

numerical value of the Molad, and this would sustain my opinion that the Babylonians did not yet know the 

Molad even if they knew the organic rules of the calendar perhaps only by inference. 
125

 If mean conjunction does not occur before noon, the new crescent cannot, in any case, be visible the 

next evening after sunset. This explanation seems to be that of the Braita “Nolad Kodem Hazot” B. Rosh 

Hashannah 20b, which could explain the origin of the rule of Molad Zaken. 
126

 Modern mean time is ahead by 16.5m with respect to the mean time of Al-Battani and Ptolemy. 
127

 Al-Battani observed a true equinox in ar-Raqqah on September 19, 882 C.E. at 1h 15m after midnight. 

Of course, he did not observe it directly, but he calculated it on the basis of observations during the 

preceding and subsequent days. Al-Battani’s determination was amazingly precise. 
128

 360° correspond to 24h or 1440m; therefore, 1° corresponds to 4 m. 
129

 Let ω be the longitude of the perigee, then L = v + ω and l = M + ω. The longitude of the perigee was  

      282° 4.5’ in October 1950.   

      One demonstrates that the equation of the centre can be written on the following way: 

      C = v – M = (2e-0.25e
3
) sin M + 1.25 e

2
 sin 2M + (13/12) e

3
 sin 3M+……….. 

       See Smart, chap. V, p. 120, formula 87. 

      This formula is known as the equation of the centre, its importance lies in the fact that the true anomaly  

      v is expressed directly in terms of the eccentricity e and the mean anomaly. When e and M are given, v  

      can be calculated.  
130

 ES2 is parallel to CS. 
131

 It corresponds to the modern mean anomaly but it is measured from the apogee while M is measured 

from the perigee, therefore M = 180° + α. 
132

 In modern astronomy, this little angle is called the equation of the centre. Nevertheless β = α – δ, i.e. the  

     mean anomaly minus the true anomaly but C = v – M, i.e. the true anomaly minus the mean anomaly.  

      Therefore C = - β  
133

 It corresponds to the modern true anomaly v but v = 180° + δ. 
134

 We can write L = δ + θ and l = α + θ.  

      Ptolemy considered that θ, the longitude of the apogee, is constant and equal to 65.5°. Al- Battani had  

      fixed the value of θ for 1 March 880 C.E. to 82° 14’, θ increasing with 1° in 66 years.  

      In triangle ECS of figure 7bis, let EC = c and CA = a.  We have then the following relations: 

      ES* sin β = c* sin α 

      ES* cos β = a + c* cos α  

      By division:  tan β = (c* sin α)/ (a + c* cos α) = e* sin α / (1+ e* cos α). 

      But β is less than 2°, therefore, tan β ≈ β (expressed in radian). 

      Using the Maclaurin serie 1/ (1-x) = 1+x + x
2
 + x

3
 + ………

                                                                                                

 
      we can derive by substituting –e*cos α for x 

       1/ (1+e cos α) = 1 – e cos α + e
2
 cos

2
 α – e

3
 cos

3
 α + …………. 

       Multiplying by e* sin α:  

       e sin α / (1 + e cos α) = e sin α – e
2
 sin α cos α + e

3
 sin α cos

2
 α – e

4 
sin α cos

3
 α +……..             

       Now M = α + 180° therefore sin α = - sin M and cos α = - cos M. 

       C = -β = e sin M – e
2
 sin M cos M + e

3
 sin M cos

2
 M - ……This is the Equation of the centre   

       according to the ancients. Comparing this relation with the equation of the centre according to the 

       moderns   

       C = (2e – 0.25 e
3
) sin M + 2.5 e

2
 sin M cos M …………….. 

       we conclude  e ancients = (2e – 0.25 e
3
) moderns.     
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       Now e = 0.01673 and therefore e

3
 = 0.00000468 is negligible, therefore  

                             e ancients = 2e moderns. 

         We understand now why Ptolemy calculated through the measure of the length of the seasons an  

      eccentricity e = 0.04167 and Al-Battani calculated a more accurate value e = 0.034644. 

      An important consequence of these considerations is the following: the sun’s orbit of the ancients is not  

      the principal circle, circumscribed to the ellipse of the moderns. The circular path which allowed the  

      ancients accounting for the evolution of the sun’s longitude is a circle for which (today) e = EC/CA =  

       0.03346. Its centre is above the centre of the ellipse and assuming that the radius of the circle is a, the  

       semi-major axis of the ellipse, the points A and P are slightly different. These calculations 

       of a high level, are not necessary to the common reader. nevertheless I think that it is interesting   

       explaining them because, to the best of my knowledge, you cannot find them in any book.  

       This original demonstration could interest the more advanced reader.                                                                                         
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