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Maimonides in the Guide of the Perplexed I: 73 בנושא שני הקווים on the 
proposition II: 14 in Apollonius’ second book of the conic sections: a 
synthesis. 
 
 
Maimonides knew the Chef d’Oeuvre of Apollonius ‘The Conics’ and he used the proposition 
II-14 in the formulation of an argument against the Calam at the end of the first part of the 
Guide of the perplexed. He wrote that there are things which are impossible to imagine and 
however, we observe them or we can demonstrate them. He offered the example of the two 
lines, the hyperbola and its asymptote which even if produced to infinity, approach nearer one 
another and come within a distance less than any given distance without meeting. This last 
point was considered as unimaginable. This proposition puzzled the mathematicians and the 
philosophers until the beginning of the modern time. Maimonides’ geometric argument 
stimulated the interest of Jewish philosophers and mathematicians. They tried to elaborate, 
with the help of ancient compositions, independent proves. We find quotations from 
important gentiles authors related to Apollonius’ proposition and bearing the mark of 
Maimonides’ expression. In the present paper we propose a synthesis of these works. 
We raise also the issue whether the conics considered by the ancients i.e. the conic sections 
are equivalent to the conics considered today in analytic geometry.    
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Maimonides in the Guide of the Perplexed I: 73 בנושא שני הקווים on the 
proposition II: 14 in Apollonius’ second book of the conic sections: a 
synthesis. 
 
The end of the first part of the Guide of the Perplexes (chapters 71 – 75) is devoted to the 
refutation of the Calam. The Calam is a pseudo rational and philosophical system developed 
by the Muslim Doctors in order to contradict the agnostic philosophers of the classical Greek 
period. Maimonides’ aim is contradicting the arguments of the agnostic philosophers and the 
Muslim Mottecallemin and demonstrating the weakness of their argumentations before 
expounding his own views. 
Maimonides emphasizes the weakness of the arguments of the Calam.  For example in chapter 
71, he doesn’t accept their demonstration of the newness of the world. The thinkers of the 
Calam insisted on the newness of the world and proved by this way the existence of God. 
Maimonides however rejects their argumentation and writes that all their pretended proves of 
the newness of the world are subjected to doubts. ‘They are decisive proves only for people 
who accept fallacious arguments and cannot make the difference between demonstration, 
dialectic and sophism’. In fact their demonstrations are doubtful and rest on unproven early 
beginnings. 
In chapter 73, Maimonides considers twelve propositions of the Calam. The tenth proposition 
deals with a fundamental basis of the science of the Calam. The scholars of the Calam, the 
Mottécallemin, contend that anything imaginable or conceivable is acceptable for the intellect 
or the faculty of reason. Maimonides seeks to establish the thesis that ‘man is not 
distinguished by having imagination’ and that the ‘act of imagination is not the act of the 
intellect but rather the contrary’. 
With that aim, Maimonides considers contradictory examples. 

1. We can conceive in our imagination a human being with a horse head and wings or 
other similar creatures. But this is ‘false invention’ because there isn’t such a creature. 

2. He insists on the importance of the mathematical sciences and the propositions that we 
can take from them. ‘There are things that men cannot imagine but we can prove that 
they exist and represent the reality’.   
a. If we consider on the spherical earth two people in two diametrically opposed 

places. Each of them has the head toward the sky and the feet toward the earth. It 
is not imaginable that none of them falls. However the facts prove the contrary and 
each of them considers that it is the other who is upside down.1 

b. Another example: ‘It has been made clear in the second book of the conic sections2  
      that two lines between which there is a certain distance at the outset, may go forth 
      in such a way that the farther they go, this distance diminishes and they come  
      nearer to one another, but without it ever being possible for them to meet even if  
      they are drawn forth to infinity and even though they come nearer to one another 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 Maimonides does not elaborate. Apparently the reality seems sufficient to prove the absence of pertinence of 
the imagination. However, for people preceding Newton and the principle of the universal attraction, the reality 
remained paradoxical. But, surprisingly, the case was not discussed by any commentator. 
2 Literally,ספר החרוטים means the book of the cones. He has in mind Apollonius books of the conics. 
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   Figure 1: The different types of conic sections, ellipse when the cutting plane cuts only one nappe of the 
cone, parabola when it is parallel to an element of the cone and hyperbola when it cuts both nappes of the 
cone. We exclude three particular cases. 1. The plane crosses the vertex: the intersection is a point. 2. The 
plane is tangent to the cone along an element of the cone: the intersection is a straight line. 3. The plane 
passes through the axis of the cone: the intersection is two straight lines. 

 
                 the farther they go. This cannot be imagined and can in no way enter within the net  

     of imagination. Of these two lines, one is straight and the other curved, as has been  
     made clear there in the above-mentioned work’.3 
 

The Hebrew translation of ibn Tibbon4 was the following: 
קווים יהיה ביניהם בתחילת יציאותם רוחק אחד, וכל  וכן התבאר במופת במאמר השני מספר החרוטים יציאת שני''

אשר ירחקו יסתר הרוחק ההוא ויקרב אחד מהם אל האחד, ולא יתכן הפגשם לעולם ואפילו יצאו לבלתי תכלית. 
דומה ולא שיפול בשכבת הדמיון כלל. ושני הקווים ההם, האחד ואע''פ שכל אשר ירחקו יתקרבו. וזה לא יתכן שי

עוקם כמו שהתבאר שם''.מהם ישר והאחד מ  
 
This is the origin and the context of Maimonides’ famous quotation of the proposition II: 14 
in Apollonius’ book of the conic sections.5 
Maimonides’ quotation and the precise allusion to Apollonius’ book of the conic sections 
prove that Maimonides was well acquainted with this book. It was even adduced that 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 Quoted after the translation by Shlomo Pines : Chicago 1963, I. 210. 
4 Samuel ben Judah ibn Tibbon, Provence (Lunel, Arles, Béziers and Marseilles) , about 1160 – 1230. He 
belonged to a famous family of scholars and translators; he was the son of Judah, the father of Moses and the 
grand-father of the astronomer Jacob ben Machir. 
5 Apollonius of Perga, celebrated geometer (260 – 200 BCE). 
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Maimonides is the author of a commentary on Apollonius’ conic sections,6 preserved in an 
Arab manuscript ascribing it to ‘al-ra’is Ibn Imran  Musa bin Ubayd Allah al-Israili al-
Qurtubi.’ This attribution must however be considered with reservation.7The text of the 
proposition II 14 of Apollonius is the following: ‘The asymptotes and the section, if produced 
to infinity, approach nearer one another and come within a distance less than any given 
distance’.8 
In Rashed’s new edition of Apollonius’ treatise of the conic sections, the text of the 
proposition II 14 is the following: ‘Si un point s’éloigne sur une hyperbole H de centre A, il se 
rapproche autant que l’on veut de l’une des asymptotes sans la rencontrer’.9   
The demonstration of this proposition is based on the following consideration: Let G and S be 
two points of the same branch of the hyperbola. Through these two points we draw two 
parallels: the first passing through G cuts the asymptotes in H and N, the second passing 
through S cuts the asymptotes in C and L. We assume that SL > SC and GN > GH. We have 
then, because of the former proposition II 10: 
 GH . GN   = SC . SL = P   (1) where P is a constant. 
Now because BL > BN, certainly CL > NH   (2) 
thus SC + SL > GH + GN  (3) 
Let us prove that SL > GN.10 We draw the straight line BG cutting LC in O. We have AO > 
AG therefore LO > NG and certainly SL >GN (4) 
When point G moves to the right and becomes S, SL > GN and SG= (GH .GN) / SL is smaller 
than GH. 
Therefore when G moves to the right, GH remains > 0 but it becomes always smaller.  
GH will become smaller than any quantity ԑ when G is sufficiently far in the right direction, 
as soon as GN >  P / ԑ = constant / ԑ.11 
The book of Apollonius was translated into Arab during the 9th century and from the 10th 
century onwards a few important Arab mathematicians published memoirs devoted to some 
properties of the conic sections and especially to the asymptotic property of the hyperbola 
considered in the proposition II: 14 of Apollonius. Indeed this proposition puzzled the Arab 
mathematicians. 
                    

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
6 See Langermann (1984). 
7 See Gad Freudenthal (2000): The Transmission of ‘On two lines’p.52, note 3. 
8 See Heath (1896). 
9 See Rashed (2010) vol 2. 
10	
  Algebric	
  demonstration:	
  We use the reductio ad absurdum method of reasoning: 

1. If SL = GN  (4) then SC > GH because of (3)  
and then SC . SL > GH . SL = GH . GN. This is impossible because it contradicts (1). 

2. If SL < GN (5) then (3) and (1) give: 
SL + P / SL > GN + P / GN 
0 < GN – SL < P (1 / SL – 1 / GN) = (P / SL.GN) (GN – SL) 
Hence (P / SL.GN) > 1 and P > SL . GN. Now P = GN . GH 
Therefore GN . GH > SL . GN and  GH > SL. But GN > SL   (5) Thus  
GH + GN = NH > 2 SL > LC because we assumed SL > SC. This is impossible because it contradicts 
(2). Thus SL > GN and therefore SC = P / SL < GH = P / GN. 

 
11 See Rashed (2010), vol 2 pp. 26 – 27. 



5	
  
	
  

                        
 Figure 2: Demonstration of the proposition II-14 of Apollonius. SL > GN and CS < GH. When G moves 
to the right, the distance GH diminishes and becomes < ԑ when G is sufficiently far to the right. 
	
  

Historical demonstrations of the properties of the asymptotes of the hyperbola.  
 
Among these Arab mathematicians we find al-Sijzi12 (10-11th century), al-Tusi13 (13th 
century), al-Qumi (11th century) and al-Haythan (10-11th century). Two Latin manuscripts are 
also extant; indeed Clagett discovered a Latin manuscript which he edited and entitled: 
Tractatus de duabus lineis semper approximantibus sibi invicem et nunquam concurrentibus 
or simply on two lines.14 This text is likely the translation of an Arab lost text; however a 
Hebrew translation is extant in several manuscripts.15 Both texts were probably used by the 
authors of the middle age. Clagett studied a second Latin text giving an original 
demonstration of the asymptotic properties of the asymptotes of the hyperbola.16 It is in fact 
an anonym composition related to the parabolic mirrors which deals in the conclusion with 
the hyperbola and the properties of its asymptotes. 
From the thirteenth century onwards, Hebrew compositions begin to appear. This is the direct 
result of the publication of the Guide and its increasing influence. The Jewish authors, who 
didn’t know the work of Apollonius, tried to give a direct demonstration of the geometrical 
property of the asymptotes of the hyperbola or discuss the philosophical aspects of the notion 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12 Rashed, R. Al-Sijzi et Maimonide: commentaire mathématique et philosophique de la proposition II-14 des 
Coniques d’Apollonius, Archives internationales d’Histoire des Sciences, vol 37, n° 119, 1987, pp. 263 -296. 
13 Al-Tusi, Oeuvres Mathématiques. Algèbre et Géométrie au 12e siècle. Texte établi et traduit par R. Rashed, 2 
vol, Paris 1986. Vol 1: pp. 5 – 15 and Vol 2: pp. 129 -130. 
14 See clagett (1954). 
15 A list of these manuscript was given by Freudenthal ( 2000) in Maimonides and the Sciences, Kluwer, 2000 p. 
50. 
16 See Clagett (1980) chap IV: The speculi almukefi composition, anonymous composition of the 13 – 14th 
centuries. It was improved and developed by Regiomontanus and published by A. Gogava. 
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of infinity. They generally rested on former sources like the former Arabic compositions and 
from the 15th century onwards, also on Latin texts. 
Tony Levi has examined from a mathematical point of view the different Hebrew texts, 
printed and still in manuscript, with the aim finding connections with the former texts in Arab 
and Latin. He identified texts (printed or in manuscript) authored by: 

n Shimon Mottot, Italy 15th century. The only information extant is that this author was 
contemporary and befriended with the mathematician Mordechai  Finzi of Mantua. 

n Efodi alias Profiat Duran, the Provençal name of Moses ha-Levi from Perpignan (1345 
– 1420), physician, astronomer and polemist against the Christian faith and the Jews 
believing in it. His commentary on the Guide is classic. 

n Solomon ben Isaac. 
n Eliahu ben Isaac ben Eliahu ben Aharon ha-Kohen (15-16th century). 
n R. Moses ben Abraham Provençali (1503 – 1575) of Mantova.17 

 
All these texts consider the section of a cone of revolution cut by a plane parallel to the axis of 
the cone. 
Tsvi Langermann has also identified a manuscript18 about the lines which never meet by 
Mordechai Finzi.19 In this manuscript the considered curve is not a hyperbola but a conchoid. 
This curve had already been studied by the Greek mathematicians Nicomedes,20 Eutocius21 
and Pappus.22 He noted also that Finzi could have been inspired by another text published 
recently23 and entitled ‘Meyasher Aqov’ ascribed to a certain Alfonso, who could perhaps be 
identified with Abner of Burgos (1270 – 1340).24  
Dr Shimon Bollag has gathered the titles of the Hebrew printed texts related to the 
mathematical aspects of the ‘two lines’. Their aim was to find a direct prove of Maimonides’ 
proposition.    

1. .1837, מורה המורה, פרסבורג יםכורה נבומר' שם טוס פלקירא, פירוש ל   
2. בר' יוסף ב''ר אבא מארי כספי,   'עמודי כסף' ו - .1848'משכיות כסף', פרנקפורט  -  
3. .1852ר' משה בן יהושע הנרבוני, פירוש למורה נבוכים, וינה    
4. .1551ר' יצחק בן משה הלוי דוראן בעל האפודי, פירוש למורה נבוכים, ויניציה    
5. 1473ר' שמעון מוטוט, ביאור בסוף ספרו על האלגברה    . כת''י.1445 -  
6. .1553ובינצאל, מאמר שני הקוים, בתוך מורה נבוכים, סביוניטה ר' משה בן אברהם פר   
7.  'מעין חתום. עמספר אלים, ראה . 1639ר' שלמה יוסף הרופא, יש''ר מקנדיא, ספר אלים, אמסטרדאם  

תכ''ד .1867תכ''ו בדפוס אודסה -  
8. (ס' קע''ד)  .1679ר' שמעון בן שמואל בכרך, שו''ת חוט השני, פרנקפורט    
9. . 1699חוות יאיר, פרנקפורט בו שמעון בכרך, שו''ת ר' יאיר חיים    

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
17 He was one of the great rabbinic authorities of his time.  
18 Bodley. Mich: 35a 91b. 
19 Italian mathematician and scholar died in 1476. See Langermann  (1988) pp. 33 – 38. 
20 Eutocius of Ascalon (about 480 – 540 C.E), Greek mathematician, author of commentaries on Archimedean 
treatises and on Apollonian conics. 
21 Nicomedes (about 280 – 210 B.C.E), ancient great mathematician who discovered the conchoids. 
22 Pappus of Alexandria (about 290 – 350 C.E), Greek mathematician and compiler author of an important 
theorem in geometry.  
23 Alfonso: Meyasher Aqov ed. Gluksina, G.M. Moscow, 1983. See Langermann (1999) pp. 33 – 39.  
24 Abner of Burgos (about 1270 – 1340) was an apostate and anti-Jewish polemist. He was converted at the age 
of 50 under the name of Alfonso de Valladolid. 
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10. .1720ר' יהונתן בן יוסף מראזנאי, ספר ישועה בישראל , פרנקפורט    
11. .1730פר אמונת חכמים, מנטובה סר' שר שלום אביעד בן מנחם שמעון בזיליה,    
12. .1732ר' עמנואל חי בן אברהם ריקי, ספר חושב מחשבות, אמסטרדאם    
13. .1772ר' יצחק בן משה סטאנוב, ספר אדר היקר, ברלין     

Note that the manuscript25 of R. Moses Provençal was ended already in 1549. It was 
immediately translated into Italian and edited by R. Joseph Shalit of Mantova in 1550. 
Cardano26 drew on this work of R. Provençal in his 1554 enlarged treatment of the Problem. 
Peletier27 who examined also this problem was influenced by the work of Cardano. Finally we 
note the important work of Francesco Barozzi28 who published in 1586 a recapitulative book 
‘Admirandum illud geometricum problema tredecim modis demonstratum quod docat duas 
lineas in eodem plano designare, quae numquam invicem coincident, etiam si in infinitum 
protahantur, et quando longius producuntur, tanto sibiinuicem propiores euadant’ detailing 
thirteen different demonstrations of the theorem of the two lines, and among them the method 
of R. Provençal, the works of Cardano and Peletier.29   
 
The mathematical approach of al- Sijzi. 
 

              
 
Figure 3: the demonstration of al-Sijzi. Left: the figure explaining the proposition II-10 of Apollonius. 
Right: The proposition II-10 with respectively HK, ∆Z and ∆E, Hθ parallel to the asymptotes. 
 
It is not our intention to examine each mathematical approach. However, the solutions of the 
Arab mathematicians al-Sijzi and al-Tusi have a special importance because of their own 
merits, their influence on the later Latin and Jewish mathematicians and because they, if we 
exclude al-Tusi, were probably known from Maimonides. Al-Sijzi used the proposition II-12 
of Apollonius. According to it, let Bu and Bv denote the asymptotes of a hyperbola. From the 
point ∆ of the hyperbola, we draw to rights, the one intersecting Bu in E and the second 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
25 Still extant. 
26 Mathematician and Mechanical engineer (1501 – 1576), known for his solution of the cubic equation, the 
Cardan shaft with universal joint and the Cardan ring. 
27 Mathematician and humanist poet (member of La Pleiade) (1517 – 1582). 
28 Mathematician and Astronomer (1537 – 1604). He published in 1586 his work summarizing the thirteen 
methods of demonstration of the problem of the asymptote. In 1587 he was accused of apostasy and heresy; he 
was severely finned.  
29 See Clagett (1980). 



8	
  
	
  

intersecting Bv in Z. From another point H of the hyperbola we draw the parallels to ∆E and 
∆z, they intersect Bu and Bv respectively in θ and K: we have then ∆E. ∆Z = Hθ . HK. 
Al-Sijzi considered the case when the rights drawn from H and ∆ are parallels to the 
asymptotes. We have then, considering the hyperbola in the system of coordinates Bu, Bv of 
its asymptotes: x∆ . y∆ = xH. yH.30 If we multiply both terms by sin(uBv) we can interpret it as 
the equality of the area of all the parallelograms constructed parallel to the asymptotes from 
any point of the hyperbola. Al-Sijzi uses this result for the proof of the proposition II-14 of 
Apollonius.  

n  The area of a line is zero. Thus the point ∆ is never on the asymptote. 
n When x∆ increases y∆ diminishes and it becomes smaller than any small quantity ԑ as 

soon as > S / y∆.,sin(uBv) where S is the constant area of the parallelograms.      
 
The mathematical approach of al-Tusi. 
 

 
Figure 4: left. The triangle ABC is rectangle in B and isosceles, AB = BC. By rotation around BD, the axis 
of the cone, it generates a cone of revolution with φ = 45°. The cutting plane GFHEK cuts both nappes of 
the cone. E and H are the vertices of the hyperbola and F is its center. We will study the inferior branch 
TE. Right.  We represent at a greater scale, the inferior branch of the hyperbola TET’ and its asymptotes 
FS and FS’. 
	
  

The approach of al-Tusi is less general than the former methods. He works with a cone with φ 
= 45°. Thus any section of the cone by a plane including the axis of the cone is a rectangular 
isosceles triangle. 

1. Lemma. 
 Al- Tusi proves by application of the results of the proposition I-12 of the second book of 
Apollonius in this special case of an angle φ = 45°, that (GE + EK) * EK = TK2. This relation 
is also valid in according the modern methods of the analytical geometry. The equation of the 
hyperbola with regard to its axes Fx0y0 is: x0

2/a2 – y0
2/b2 = 1. Or: y0

2 = (b2 / a2)*(x0
2– a2). If we 

make a translation of the system of coordinates toward Exy, where E is the vertex of the 
hyperbola then x0 = a +x and y0 = y. The equation of the hyperbola in the new system of 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
30 This property is very important because it proves the equivalence between the conic sections and the conics 
defined as representing the graph of the equations of the second degree in x and y. Indeed the equation of an 
hyperbola, defined in this last way, is also x.y = constant when the asymptotes are taken as the axes of 
coordinates. 
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coordinates is y2 = (b2 / a2)*((x+a)2– a2) = (b2 / a2)*(x2 + 2ax+a2– a2) = (b2 / a2) *x* (x + 2ax). 
Now in the case of perpendicular asymptotes we have a=b and y2 = x* (x + 2ax).  

2. Demonstration of the proposition.  
After the proof of this lemma, al-Tusi examines the problem of the asymptotes. On fig4 left, 
let ABC a rectangular isosceles triangle be the section of a cone by a plane to which the axis 
BD of the cone belongs. Let GFHEK denote a plane perpendicular to the former plane; it cuts 
the cone along a hyperbola: F is its center, G and E are the vertices and TE is a part of one of 
its branches. On fig 4 right, we represented the branch TET’ of the hyperbola: F is the center, 
E is the vertex and NF and N’F are the asymptotes. From Apollonius’ proposition II-10 we 
know that I’Q . OI = N’T . TN= constant. But I’M = MF, therefore I’O = FM + MO = FMO. 
We have thus: FMO . OI = FKT . TN = constant. We note that KF > MF and KT >MO 
because of the former lemma. Thus FKT > FMO and therefore TN < OI and TS < OP because 

OP/OI = TS/TN= !
!

 . 
NK > TK because NK = KE + EF = x + a and (TK)2 = x* (x + 2ax) Thus NT>TS>0 but NT 
and NS will become smaller than any infinitely small ԑ as soon as EK = x is sufficiently great. 
 
This demonstration is not fundamentally different than that of al-Sijzi. It rests on the same 
proposition II-10, as the proof of Apollonius; it is less general because it postulates an 
opening angle of φ = 45° of the cone but it allows considering a distance of the point of the 
hyperbola to the asymptote, perpendicular to it. 
 
Philosophical considerations about the properties of the asymptotes of the hyperbola. 
When Maimonides introduced his example with the asymptotes of a hyperbola, he had no 
mathematical problem, the demonstrations of Apollonius or of the Arab mathematicians that 
he followed, were clear and convincing. The only purpose was philosophical. Many thinkers, 
Jewish and non-Jewish, quoted later this piece or referred to it.    

Isaac ben Abraham ibn Latif (Provence, about 1210 – 1280).31 

‘The knowledge of counting bears upon sensible reality, but its object stretches further and 
further to infinity. So also the sciences of geometry, al-handasah in Arabic, bears upon the 
sensible which stretches further and further until it disappears from the eye, the end existing 
only in the intellect, just as an infinite march. So are also two lines between which there is a 
certain distance at the outset and which may go forth in such a way that the further they go, 
this distance diminishes and they come nearer to one another , but without it ever being 
possible for them to meet even if they are drawn forth to infinity,’  

Levi ben Gershom (South of France, 1288 – 1344). 

‘Infinite increase is impossible inasmuch as magnitude is taken to be in absolute body, even if 
we do not postulate this to be a natural body. For body, whatever body it may be, is 
comprehended within the size of the world. Ibn Rushd therefore says that since in its 
existence line is not separate from matter, the geometer who postulates a line greater than the 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
31 Sefer Rav Pe’alim, Lemberg 1885 p. 21r. Quoted in Freudenthal (2000) p. 56 note 70. 
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world postulates something wrong and false….And Ibn Rushd further says that the geometer 
need not at all postulate such a line, for the proof bearing on the long and on the short line is 
one and the same. According to my own opinion, however, occasionally the geometer must 
postulate such a line. For instance, when defining the parallel lines, he says that if protracted 
infinitely to either side they do not meet. Indeed, lines which do not meet when drawn to an 
extent equal to the size of the world are not necessarily parallel. This is self-evident. The same 
holds of what the geometer says of two lines which, the further they go, come closer but 
whose meeting is impossible, even if they are drawn forth to infinity.’32   

Hasdai Crescas (Barcelona 1340 – 1410). 

It has been demonstrated in the book on Conic Sections that it is possible for a distance 
infinitely to decrease and still never completely to disappear. It is possible to assume, for 
instance, two lines, which, by how much farther they are extended, are brought so much 
nearer to each other and still will never meet, even if they are produced to infinity. If in the 
case of decrease, there is always residual distance which does not disappear, a fortiori in the 
case of increase it should be possible for a distance, though infinitely increased, always to 
remain limited.33 

Newton, Isaac (1643 – 1727): He is repeating a century-old argument. The most influential 
statement of this reasoning had already been formulated in the Guide of the Perplexed. Both 
accept the pre-eminence of the power of the reason upon the imagination and the common 
sense. 

‘I admit that an infinite number of things is difficult to conceive, and is therefore taken by 
many people as impossible: but there are many things concerning numbers and magnitudes 
which to men not learned in mathematics will appear paradoxical, and yet are entirely true. As 
that …two neighboring bodies (corpora) are always able to approach one another and yet 
never touch each other….For mathematicians know that …the distance between hyperbolae 
and their asymptotes, when they are produced, always becomes smaller but never vanishes.’34  

Montaigne, Michel Eyquem de (1533 – 1592): Les Essais, Livre II, chap. 17, (original text – 
Old French). Montaigne uses the argument in the opposite direction and he draws an opposite 
conclusion.35 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
32 Levi ben Gershom, Supercommentary on Averroes’ Intermediate Commentary on Aristotle’s Physics 

 III,iii,5. Manuscript in Paris mentioned by Langermann and quoted by Freudenthal (2000) p. 56, note 71. 
33 Crescas critique of Aristotle, Wolfson, Harry A, Cambridge, Mass. 1929, p 207. Quoted in Freudenthal (2000) 
p. 52 note 72. 
34 McGuire J.E. ‘Newton on Place, Time and God: An unpublished Source’ in British Journal for the History of 
Science, 11 (1978), 114-29 at p. 119 (McGuire translation). Quoted in Freudenthal (2000),  p. 52 note 1. 
35 Maimonides followed by Newton had opposed experience and demonstration against imagination and 
common sense and he had given pre-eminence to the firsts (see the two examples quoted in the Guide, I: 73). 
Montaigne mixes the arguments (he doesn’t know the Guide) and he opposes now rational demonstration against 
the truth of the experience.  By the tone of his prose and his appreciation of geometry, we see that he gives pre-
eminence to the truth of the experience and uses the argument of the ‘two lines’ to prove the questionable 
character of the verbose and scholastic demonstrations versus the truth of the experience.  
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‘ Or ce sont des choses qui se choquent souvent ; et m’a l’on dit qu’en la Géométrie (qui 
pense avoir gagné le haut point de certitude parmy les sciences) il se trouve des 
démonstrations inévitables subvertissans36 la vérité de l’expérience : comme Jacques 
Peletier37 me disoit chez moy qu’il avoit trouvé deux lignes s’acheminans l’une vers l’autre 
pour se joindre, qu’il vérifoit toutefois ne pouvoir jamais, jusques à l’infinité, arriver à se 
toucher.’38 

Voltaire (Arouet, François 1694 – 1798): Dialogues philosophiques VII, 1. 

‘…N’êtes-vous pas forcé d’admettre les asymptotes en géométrie sans comprendre comment 
ces lignes peuvent s’approcher toujours, et ne se toucher jamais? N’y a-t-il pas des choses 
aussi incompréhensibles que démontrées dans les propriétés du cercle ? Concevoir donc qu’on 
doit admettre l’incompréhensible, quand l’existence de cet incompréhensible est prouvée.’39   

The problematic of the two lines today. 

We note that all the pieces mentioned and considered above date back the seventeenth century 
and exceptionally the eighteenth century for the last document. Apparently this problem is not 
anymore very much in the news. We can explain it by the following elements: 

n The rabbis have lost any interest for mathematics and generally for philosophy. 
n The Guide of the Perplexes is considered today with reservation by the orthodox 

community. 
n Modern people, graduated from the secondary school education system (maturity), and 

certainly those who attended calculus courses at university and engineering schools, 
overcome their discomfort and perplexity of the infinite. They are accustomed to 
reasoning on the infinite and can calculate limits of convergent series and 
undetermined values of functions of the type: !

!
, 0  ×  ∞  𝑜𝑟  !

!
 . In contradiction with the 

text of Levi ben Gershom quoted above, they accept even that two parallel rights, 
which are separated by a fixed distance, cut at the infinite: this allows generalizing 
many properties in a more homogenous presentation. 

n Although we dispose today of the best texts, translations and commentaries, the Guide 
of the Perplexed is no more read by the well-read men, only specialists and 
exceptional people read it. 

n Today the conics are defined as the curves having a function of the second degree as 
equation. The notion of asymptote lost its paradoxical character. 

The hyperbola referred to its symmetry axes. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
36 ‘Subvertissans’, today ‘subvertissant’ means subverting, reversing.  
37 Jacques Peletier du Mans (1517 – 1582) was a (today forgotten) mathematician and poet, befriended with 
Ronsard and du Bellay.  He wrote an essay on the problem of ‘the two lines’ included in the book of Francesco 
Barozzi. 
38 Michel de Montaigne, Les Essais, ed. Alexandre Micha, Paris, 1969, pp. 236 – 7.   Quoted by Rashed (2000) 
p.172, note 36 and Freudenthal (2000) p. 56, note 74. 
39 Quoted by Rashed (2000) p. 172, note 37. 
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The equation of the hyperbola is !
!

!!
−   !

!

!!
= 1      (1) 

The equation of the asymptotes is   !
!

!!
−   !

!

!!
= 0  or 𝑦 = ±   !

!
  𝑥.     (2) 

The equation of the hyperbola can, in this particular case, be solved with regard to y 

𝑎!𝑦! = 𝑏!(𝑥! − 𝑎!)  hence !
!
= ± !

!
1− !!

!!
 . If we consider the part of the hyperbola 

situated in the first quadrant, we see that the hyperbola is always under the asymptote. It is 
only when x grows toward infinity that Lim  !

!
=   ± !

!
 .  

The equation of the tangent to the hyperbola in the point x1 y1 is given by: !.!!
!!

−   !.!!
!!

= 1. 

It can also be written on the form: !.!!
!.!!

=    !
!

!!
 + !

!

!.!!
  where x and y represents the current point 

of the tangent, x1 y1 is the chosen point and point of contact. If this point of contact tends 
toward infinity then !!

!!  
 tends toward  ± !

!
 . The equation of the tangent tends toward !

!
=   ± !

!
 . 

The tangent of the hyperbola tends toward the asymptote when the point of contact tends to 
infinity. 

The conic sections compared to the curves defined by functions of the second degree. 

The Greeks defined the conics, as the word indicates it, as the sections of cones presenting a 
symmetry of revolution. This definition and conception remained valid until the 17th century. 
The analytic geometry was created and developed in the 17th century. It reached all its might 
thanks to the development of calculus in the 18th century. Today we define the conics through 
the functions of the second degree and their focus-directrix property. We can define, 
materialize and draw with precision the conics, the tangents and the asymptotes. The problem 
is then to establish and prove on an indisputable manner that there is an identity between the 
two approaches, and that the properties established by the methods of the analytical geometry 
are still valid for the conic sections. Normally this aspect of the problem is generally not 
raised during the scholar curriculum. 

1. Analytical method. 
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Figure 5: Intersection of a cone by a cutting plane. Left: perspective with representation of the cone, the 
plane perpendicular to plane xy and representation of the three system of coordinates Oxyz, Ax1y1z1 and 
Ax2y2z2 also called AXYZ. A is the intersection of the cutting plane p with the axis Oy. It is unfortunately 
difficult to distinguish on the figure. Right: Projection of the precedent figure on the frontal plane xy. The 
point O represents also the axis z, the point A represents also the axes z1 and z2 which we rename Z. 
 

Let us consider a cone of revolution in a system of rectangular coordinates Oxyz. The origin 
O coincides with the vertex of the cone and the axis x with the symmetry axis of the cone. 
The cone is cut by a plane p perpendicular to plane Oxy and parallel to Oz and oblique with 
regard to Ox and Oy. Let us call the point of intersection of this plane with Oy, A. We 
consider a second system of coordinates Ax1y1z1 parallel to Oxyz, where A is the point of 
intersection of plane p by Oy and a third system of coordinates Ax2y2z2 which is the result of 
the rotation of Ax1y1z1 around axis z1 so that axis y2 becomes perpendicular to the plane p. 

Equation of the cone in the axes Oxyz. 

We consider a cone of revolution around the axis Ox, where O is its vertex we call φ the angle 
between the axis and each element of the cone. Any plane parallel to the plane Oyz and 
distant from it by x cuts the cone along a circle of radius x tgφ. The equation of the circle is y2 
+ z2 = r2 where r = x. tgφ. The equation of the cone is thus y2 + z2 = x2 tg2φ. (1) 

Changing the system of coordinates Oxyz into Ax1y1z1 by a translation of (a) parallel to axis 
Oy. We have x = x1, y = y1 + a, z = z1. The equation (1) becomes (y1+a)2 + z1

2 = x1
2.tg2φ or 

y1
2 + 2ay1 + a2+ z1

2 = x1
2 tg2φ.   (2) 
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Changing the system of coordinates Ax1y1z1 into Ax2y2z2 by a rotation of angle α around axis 
Az1 where α is the angle between Ax1and Ax2. The formulas of the change of coordinates are 
the classical formulas of a system of rectangular coordinates rotating by an angle α40 after 
permutation of x1 and y1, x2 and y2.  

x1 =  x2 cosα + y2 sinα and y1 = –x2 sinα + y2 cosα . Formula (2) becomes then                           
(– x2 sinα + y2 cosα)2 + 2a(– x2 sinα + y2 cosα) + a2+ z2

2 = (x2 cosα + y2 sinα)2.tg2φ.  (3). The 
system of coordinates is the final system, we call it AXYZ and rewrite (3)                                   
(– X sinα + Y cosα)2 + 2a(– X sinα + Y cosα) + a2+ z2

2 = (X cosα + Y sinα)2.tg2φ.  (4)                                                                       
X2sin2α+Y2cos2α – 2XYsinα.cosα – 2aXsinα+2aY.cosα+a2+Z2= (X2cos2α+2XYsinα.cosα+     
+Y2 sin2α) tg2φ.  Or after reorganization:                                                                                                                        
X2 (sin2α – cos2α tg2φ) +Y2 (cos2α – sin2α tg2φ) –2XYsinα.cosα (1 + tg2φ) – 2aX.sinα +           
+2aY.cosα+a2+Z2 = 0.       (5)                                                                                                            
The equation of the cutting plane p in the system of coordinates AXYZ is Y = 0. The equation 
of the conic section is then in the axes AXZ:  

X2 (sin2α – cos2α tg2φ) – 2aXsinα +Z2 +a2 = 0.  (6) 

The equation of a conic in axes XY is: f(X,Y) = AX2 + 2BXY + CY2+ 2DX +2EY + F = 0. 
We can divide them according to the value of AC – B2 depending on whether it is >, < or = 0. 
In our case AC – B2 = (sin2α – cos2α tg2φ) = (1 – cos2α – cos2α tg2φ) = 1 – cos2α (1+tg2φ) =    
= 1 – cos2α / cos2φ because cos2φ = 1 / (1+ tg2φ). 

X2 (1– cos2α / cos2φ) – 2aXsinα +Z2 +a2 = 0.  (6’) 

If AC – B2 = 1 - cos2α / cos2φ > 0 the conic is an ellipse. This is the case if α > φ, we have 
then cosα < cosφ and indeed then plane p cuts one nappe of the cone.                                                                      

If AC – B2 = 1 - cos2α / cos2φ < 0 the conic is a hyperbola. This is the case if α < φ, we have 
then cosα > cosφ and indeed then plane p cuts both nappes of the cone.                                    

If AC – B2 = 1 - cos2α / cos2φ = 0 the conic is a parabola. This is the case if α = φ, we have 
then cosα = cosφ and indeed then plane p cuts one nappe of the cone and is parallel to one 
element of the cone. The equation of the parabola is then: 

 – 2aXsinα +Z2 +a2 = 0.  (6’’) and the abscissa of the vertex, for Z = 0 is X = a / 2 sinα (7) 

 The axis X is one symmetry axis of the conic but A is not the center of the conic. The 
abscissa of the center is given by the equation f’(X) = 0                                        

Thus: 2X (1 – cos2α / cos2φ) – 2a sinα = 0   X =a sinα / (1 - cos2α / cos2φ).  (8)   

 If α = 0 the cutting plane is parallel to the axis of the cone and the hyperbola is symmetric 
with regard to point A, which is the center of the hyperbola. In our equation (6) the coefficient 
of X2 becomes 1 – 1 / cos2φ = (cos2φ – 1)/ cos2φ = – tg2φ.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
40 The angle α is < 90°. If α = 0°. The cutting plane is perpendicular to the axis of the cone, the section is 
circular. The cutting plane the not cut the axis Ox and there is no point A. 
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tg2φ X2 – Z2 = a2 or     𝑿𝟐

𝒂𝟐

(𝒕𝒈  !)𝟐

−    𝒁
𝟐

𝒂𝟐  
= 𝟏. The half of the axes are a / tg  𝜑  and a.    

If  α > φ, the conic is an ellipse. The equation (6) is now    (1 - cos2α / cos2φ) X2– 2aXsinα  + 
+ Z2 = a2 and the equation (8) shows that the abscissa of the center is positive: the center is 
above point A. 

If α < φ, the conic is a hyperbola. The equation (6) is now ABS(1 - cos2α / cos2φ) X2 + 
2aXsinα  – Z2 = a2 and the equation (8) shows that the abscissa of the center is negative: the 
center is beneath point A. The asymptotes of the hyperbola are given by                           
ABS(1 - cos2α / cos2φ) X2  – Z2 = 0               (9) 

or   ABS(1 - cos2α / cos2φ) X  – Z = 0              (10a)                                                                       
and ABS(1 - cos2α / cos2φ) X+ Z = 0.              (10b) 

Now equation (9) is also the equation of the intersection of the cone by the plane p when a=0. 
Thus the family of the hyperboles which are the intersection of the cone with the plane p(a) 
have the same asymptotes; they are the intersection of the cone with the plane p when a = 0. 

We have found all the parameters of the conic in function of the angle φ between the axis of 
the cone and its elements and the angle α between the axis of the cone and the cutting plane.    

The present proof is general and complete. It proves definitively the equivalence between the 
conic sections and the curves of the second degree. Therefore all the properties of the curves 
of the second degree found by the methods of the analytical geometry, especially the focus-
directrix properties are valid for the conic sections. I did not find such a proof in the many 
books I consulted but this elementary proof is certainly not new.   

                                              

2. Geometrical method. 

This method is based on the discovery in 1822 of the spheres of Dandelin,41 name given to the 
two spheres tangent to the cone and to the cutting plane. In the case of an elliptic section the 
two spheres of Dandelin are on both sides of the cutting plane. In the case of a hyperbolic 
section, the two spheres are on the same side of this cutting plane and in the case of a 
parabolic section there is only one sphere of Dandelin.  On this manner Dandelin discovered a 
surprising way of finding the focus and directrix by constructing these two spheres that, each 
of them, touches the cone along a circle and the cutting plane of the cone in a single point. 
The intersection of the plane and the cone is thus a conic section and the point at which either 
sphere touches the plane is a focus of the conic section. The intersection of the cutting plane  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
41 Belgian Engineer (1794 - 1847 ) of French origin, graduated from the famous “Ecole Polytechnique”, he 
taught at the “Ecole des Mines” of Liège. He was the author of studies on the conics (1822 – 1827). According to 
some, the theorems of Dandelin were the result of his collaboration with Quetelet (1796 - 1874). Some call the 
theorems of Dandelin: the Belgian theorems. 
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Figure 6:  Construction of the Spheres of Dandelin.  We project the cone and the cutting plane on a plane 
containing the cone’s axis and perpendicular to the cutting plane. We want to find the center of the circles 
tangent to the cone and the cutting plane. The center is at the intersection of the vertical axis and on the 
bisecting line of the angle between the cutting plane and the section of the cone. On the left figure, both 
spheres are in the same nappe of the cone and on both sides of the cutting plane. On the right figure both 
spheres are in the two nappes of the cone, on the same side of the cutting plane. If the cutting plane is 
parallel to the section of the cone, there is only one sphere of Dandelin.    
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Figure 7: The spheres of Dandelin in the tree possible cases: above left, the section is an ellipse, above 
right the section is a hyperbola and below the section is a parabola. On these figures, V1 and V2 are the 
vertices of the section. F1 and F2 are the point of contact of the spheres of Dandelin with the cutting plane 
and the foci of the conic section. P is a random point of the section. C1 and C2 are the circles of contact of 
the spheres of Dandelin with the cone. PA1A2 is an element of the cone crossing C1 in A1 and C2 in A2. We 
note that PF1 = PA1 and PF2 = PA2. In the case of the ellipse PF1 + PF2 = A1A2 = constant. In the case of the 
hyperbola PF1 – PF2 = A1A2 = constant. The intersection of the planes E1 and E2 of the circles of contact C1 
and C2 with the cutting plane are the straight lines l1 and l2, the directrices of the conic. The straight lines 
V1V2 is the main axis of the conic, g0 is parallel to it but we don’t use it. B1 and B2 (B in the case of the 
parabola) are the feet of the perpendicular drawn from P on the directrices. PF1 / PB1 = PF2 / PB2 = 
constant. 
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with the plane of the circle of contact of each sphere of Dandelin is a directrix of the conic.42 
The two circles of contact are parallel and the two directrices (ellipse and hyperbola) are 
parallel. 

First theorem of Dandelin.  

 

Figure 8: The first theorem of Dandelin. The two figures are simplified and more readable. F1 and F2 are 
the points of contact of the spheres with the cutting plane. C and D are the circles of contact of the two 
spheres with the cone. P is a point of the conic section. S and S ’are the points of intersection of an element 
of the cone passing through P with the circles of contact C and D. PS = PF1 (tangents to the little sphere) 
and PS’ = PF2 (tangents to the greater sphere). In the left figure PF1 + PF2 = SS’ the constant distance 
between the planes of C and D, perpendicular to the axis of the cone, measured along an element of the 
cone. In the right figure PF2 – PF1 = SS’ the constant distance between the planes of C and D, 
perpendicular to the axis of the cone, measured along an element of the cone. 
	
  

 

n  An elliptic section of a cone is the locus of points such that the sum of their distances 
to two fixed points, the points of contact of the cutting plane with the spheres of 
Dandelin, is constant.43  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
42Some of these historical elements as well as the demonstration are already published in Morton (1830) p. 228. 
43 In fact it seems that Pappus was already aware of the properties of the foci but the theorem of Dandelin makes 
this demonstration easier and gives the geometrical meaning of their position. In fact if Pappus knew the foci and 
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n A hyperbolic section of a cone is the locus of points such that the difference of their 
distances to two fixed points, the points of contact of the cutting plane with the 
spheres of Dandelin, is constant. 

Consider the illustrations depicting a plane intersecting a cone to form an ellipse or a 
hyperbole. The two Dandelin spheres are shown. The circles of contact of these spheres with 
the cone are the circles C and D. Each sphere touches the plane at a point of contact F1 and F2. 
Let P be a typical point of the conic, in the case of the ellipse we must prove that the sum of 
the distances PF1 +P F2 is a constant. In the case of the hyperbola we must prove, if P belongs 
to the branch 1 of the hyperbola, that the difference of the distances PF2 – PF1 is a constant.  

A line passing through P and the vertex of the cone intersects the two circles of contact at 
points S and S’. As P moves along the conic, S and S’ move along the two circles. Now the 
distance PF1 is the same as the distance PS because lines PF1 and PS are both tangent to the 
same sphere. Likewise the distance PF2 is the same as the distance PS’ because lines PF2 and 
PS’ are both tangent to the same sphere. Consequently the sum PF1 + PF2 in the case of the 
ellipse or the difference PF2 –PF1 in the case of the hyperbola, remains constant as P moves 
along the conic because and is equal to the distance SS’ between two parallel planes 
perpendicular to the axis of the cone, along an element of the cone of revolution, making a 
constant angle with it.                                                                                                                                           

Second theorem of Dandelin.  

 A conic section of a cone is the locus of points for which the distance from a focus is 
proportional to the distance from the corresponding directrix. The constant ratio between the 
distance to the focus and the distance to the directrix is denoted by’e’ the eccentricity of the 
conic section. According to the value of the eccentricity: 

n e < 1: ellipse and e = 0: circle 
n e = 1: parabola.  
n e > 1: hyperbola. 

                                     

                                 

Figure 9: The ratio of the length of two segments x and y from a point to a plane x/y = sinβ/sinα. 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
their properties, then necessarily there was an equivalence between the conic sections  and the graphs of the 
equation of the second degree in x and y, f (x,y) = 0, which have indeed the same properties. 
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Lemma. The lengths of any two line segments from a point to a plane are inversely 
proportional to the sines of the angles that the line segments make with the plane. 

Indeed we observe on fig that z = x sin α = y sin β, hence x / y = sin β / sin α.44 

Proof. Let d denote the line of intersection of p and q and let B denote the foot of the line 
segment from P perpendicular to the line d. On fig 10 left and fig 10 right we represent one 
nappe of the cone: p is the cutting plane. On fig 1o left plane p cuts one nappe of the cone 
along an ellipse, on fig 10 right plane p cuts the cone along a parabola or a hyperbola (the 
drawing is limit between the two cases). C is the circle of contact of the cone and the 
represented sphere of Dandelin, S is the point of intersection of this circle with the element of 
the cone (a line of the cone passing through the vertex) passing through P. 

 

Figure 10: The plane p cuts a cone. F is the point of contact of the cutting plane and the sphere of 
Dandelin considered, d is the intersection of the cutting plane p and q, the plane of the circle of contact of 
the sphere of Dandelin. B is the foot of the perpendicular drawn from P on d. Then PF / PB = PS / PB = 
sin β / sin α. On the left figure the plane p cuts one nappe of the cone and the section is an ellipse. On the 
right figure the situation is limit: the plane seems parallel to an element of the cone and the intersection is 
a parabola but if the plane was slightly more inclined the intersection would be a branch of hyperbola.  
 
Then PF = PS (tangents to the sphere). Let α denote the angle that every element of the cone 
makes with q and let β denote the angle between q and p. Then PF / PB = PS / PB =             
sin β / sin α = constant. 

The point F in the proof is a focus of the conic section and the line ‘d’ is the corresponding 
directrix. The constant is denoted by ‘e’, the eccentricity of the conic section. When p is 
parallel to one and only one element of the cone then α = β and e = 1 and the conic is a 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
44 Note that the angles used in this theorem are different than those used in the analytical demonstration. 
In the analytical method φ is the half angle of opening of the cone and α is the angle between the axis Ax1 and 
the cutting plane. In the geometrical method α is the angle between the elements of the cone and any plane 
perpendicular to the axis of the cone, thus 90° - φ, and β is the angle between the same plane and the cutting 
plane, thus β = 90° - α. 
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parabola. When p cuts every element of one nappe of the cone α > β and e < 1 and the conic is 
an ellipse. When p cuts both nappes of the cone, α < β, e > 1 and the conic is a hyperbola. 

Conclusion. 

The connection between the subject of the two lines, the curve and its asymptote, with the 
Jewish culture is surprising. In fact the proposition II-14 of the second book of Apollonius, 
his Chef d’Oeuvre, has puzzled mathematicians and philosophers all through the history, until 
the beginning of modern times. Maimonides, in his quality of thinker, philosopher and 
distinguished mathematician did not remain insensitive to the question and he used it as an 
argument against the Calam at the end of the first part of his Guide of the Perplexes. This was 
sufficient to stimulate the interest of Jewish intellectuals, rabbis and philosophers with a 
mathematical interest: During the period 12th – 17th centuries they studied thoroughly the 
problem and tried, with the help of the extant literature, to find complete proves which did not 
require reporting to rare books written in Latin or Arabic. It is difficult to adduce a direct 
influence of Maimonides on gentile thinkers, as those quoted above, especially Voltaire,45 but 
because of the interaction of the cultures and the deep influence of Maimonides’ Guide on the 
Scholastic, it is certain that he had certainly an indirect influence. It should be noted that the 
Guide had been translated into Latin as early as about 124046 and was thus available to gentile 
thinkers. Moreover the three quotations above from Gentiles authors refer explicitly to 
Maimonides’ argument that the experienced or demonstrated reality can go beyond the 
imagination. Anyhow the subject of the ‘two lines’ belongs now to the history of the Jewish 
thought. We have seen through the analysis of different proves of the proposition about the 
asymptotes, given by the ancients that the approach ‘conic sections’ and ‘analytic geometry’ 
are equivalent. The inventors of the analytic geometry, Descartes and Euler, still new the 
works of the ancients and were aware of this equivalence. This must explain why they did 
never raise the problem. For modern students and mathematicians, without knowledge of 
history of mathematics, the problem is serious and no satisfactory answer is proposed; for this 
reason we have proposed two direct proves. Both are instructive, especially the second, dating 
from the beginning of the 19th century and not widely known; it is of a rare elegance and it 
gives a geometrical understanding of the position of the foci and the directrices of a conic.   

In 1984 dr. S Bollag wrote a short paper about the subject of the ‘two lines’ devoted to Jewish 
references about the subject and to the commentary of R. Moses Provençal.47 Since that time 
not less than five papers, related to this subject and devoted to the study of the different 
compositions, the different manuscripts and their connections, were issued, proving that even 
if the subject is not more in the news, it still interests the historian of mathematics and 
science. Unless the discovery of new manuscripts, it seems that the subject is exhausted, the 
time has come to making a synthesis and finding back the original understanding of the first 
Greek and Arab mathematicians.   
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
45 An outspoken ‘antisemite’. 
46 Freudenthal (2000) p. 45. 
47 The paper includes a copy of the original and the translation in formulas of different passages, improving the 
understanding. The comparison of these formulas with those proposed by Werner (1522) p. 26 and summarized 
in Coolidge (1945), pp. 26 – 27, proves that R. Provençal certainly used his book. Note that he did not claim 
originality and recognized loans.  
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Appendix: 

1. The conchoids.  

Some scholars, namely Mordekhai Finzi and Solomon Delmedigo used the conchoids for 
defining the properties of the asymptote as expounded by Maimonides. Let us consider in a 
system of Cartesian coordinates a straight line passing through the vertex O and intersecting 
the straight line x = a, parallel to the y axis in a point Q. The two points P and P’ of the right 
OP, on both sides of the right OP at a distance PQ = P’Q = c generate a conchoids when the 
straight line OQ moves. The form of the conchoids depends on the ratio c /a. When c = a, O 
is a turning point. When c > a it is a double point. The parallel x = a, is always an asymptote 
of both branches. If φ is the angle between OP and the axis Ox then QP = QP’ = a / cos φ. 
The polar equation of the conchoids is then 𝑟 =    !

!"#!
  ± 𝑐 and x = r cos φ = 𝑎  ± 𝑐 cosφ. 

                                                                                               y = r sin φ = 𝑎  𝑡𝑔  φ  ± c sinφ.  

The asymptote of both branches is x = a. 

 

                   

                    

Figure 11: The Conchoids.  Three different forms according to the value of c with regard to a. Left: c = a. 
Middle: c > a. Right: c < a. 
 

2. The equivalence between the conic sections and the curves defined by functions of the 
second degree. 

The equivalence between the approach of the conics by the methods of the analytic geometry 
and the focus-directrix approach is a well-established fact taught in secondary schools before 
the maturity. We demonstrated above the equivalence of these two approaches with the conic 
section approach and we noted that this aspect of the problem is practically and nearly always 
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ignored in the modern mathematic scholar curriculum. I was puzzled by the fact that this 
problem had never been raised at the beginning of the development of the calculus and the 
analytic geometry. The examination of the book of Apollonius at the occasion of the 
understanding of the problems of the ‘two lines’ gave me a very simple answer to this 
interrogation. The propositions I-11, I-12 and I-13 of Apollonius’ first book of conics give in 
an endless statement the evaluation of the area of the square constructed on the ordinate of 
the points of conics whose axis of symmetry is the axis Ax.48 Thus if the adopted system of 
rectangular coordinates Axy is such that A is a vertex of the conic, Ay is tangent in A to the 
conic and Ax is its principal axis, the three above endless propositions can be summarized by 

the three following relations:   I-11: 𝑦! = 2   !
!

!
  𝑥 = 2  𝑝  𝑥.   Parabola. 

                                                 I-12: 𝑦! = 2   !
!

!
  𝑥 −   !

!

!!
𝑥! = 2  𝑝  𝑥 −   !

!
𝑥!. Ellipse. 

                                                 I-13: 𝑦! = 2   !
!

!
  𝑥 +   !

!

!!
𝑥! = 2  𝑝  𝑥 +   !

!
𝑥!. Hyperbola. 

               

Figure 12:  The conics with regard of the axes Axy, where A is a vertex of the conic and F is the focus. In 
this system of coordinates the equations of the conics are reduced to the formulas I-11, I-12 and I-13 
above. In the ellipse AF = e and e2 = a2 – b2. In the hyperbola AF = e and e2 = a2 + b2. In the parabola AF = 
p/2. 
  
We ascertain49 that these relations are exactly the equations of the conics when the origin of 
the system of rectangular coordinates is shifted from the center of the conic to a vertex. It 
appears that any well-read mathematician50 at the inception of the analytical geometry must 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
48 See Ver Eecke (1923) pp. 21 – 31 and Fladt (1965), pp. 15 – 17. 
49 In any textbook of analytic geometry. 
50 As it was the case for the mathematicians of the 17th and 18th centuries. Don’t forget that Halley, the great 
astronomer and close associate of Newton, knew Greek, Latin and Hebrew when he entered Queens college at 
Oxford (see Fried (2011) p. 5) and besides his scientific and astronomical achievements, he found the time in 
1710, while professor of geometry at Oxford, to produce an edition of the Greek text of the conics of Apollonius’ 
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know, from the text of Apollonius that the conic of Apollonius, those generated by conic 
sections, have the same equations than the conics considered in analytic geometry. In other 
words, there was no problem at all, from the beginning, at least for well-read mathematicians. 
Moreover these relations explain the denominations of the conics. Indeed Ellipse refers to the 
fact that the square constructed on y is less than 2px while hyperbola refers to the fact that this 
square is more than 2px.51 Nevertheless Merzbah (2010) assigns to Fermat52 the establishment 
of the correspondence of the conics with the general quadratic equations and the possibility to 
reduce the general quadratic equation of a conic into a simplified form through transformation 
of the system of coordinates (translation and rotation), Merzbach (2010) p. 323 and Fladt 
(1965) p. 64. 

3. Geometrical interpretation of the formulas (7) above. 

The vertex of the parabola is in S. We see indeed on fig. 13 that SA = a / 2 sinα = a / 2 sinφ. 

Figure 13: the plane p is parallel to an element of the cone; the intersection is a parabola of vertex S.

 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Books I-IV, a translation into Latin from the Arabic version of Books V-VII and above all, a reconstruction of 
Book VIII! Nevertheless see note 52. 
.51 See Heath (1896) p. 9 and Coolidge (1945) p. 4.  There are other explanations, however Ver Eecke (1923) p. 
25 considers this explanation “subtle and likely” 
52 Fermat, Pierre de, French mathematician (1601 – 1665). Besides his achievements in arithmetic and number 
theory, Merzbach and Boyer consider that Fermat could well have discovered the first, as soon as 1629 the basis 
of analytic geometry and even of calculus, see Merzbach (2010) pp. 321 – 323. The two referred works were 
published in 1636: “Méthode pour la recherché du minimum et du maximum”  and “Ad locos planos et solidos 
isagoge”. 
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4. Geometrical interpretation of the formulas (8) and above. 

 

 
 
Figure 12intersects both nappes of the cone. S and S1 are the vertices of the hyperbola and C is its center. 
	
  

On fig 14, φ > α, and the intersection is a hyperbola. S and S1 are the vertices, M is the 
center. The theorem of the sines gives   SA = a cosφ / sin(α+φ), AS1 = a cosφ / sin(φ-α),      
OS = a cosα / sin(α+φ), OS1 = a cosα / sin(φ-α) and SS1 = a cosα sin2φ / sin(α+φ) sin(φ-α). 

AC = SC – SA = (SS1 / 2) – SA = !!  !"#$  !"#!!
! !"# !!! !"#(!!!)

  −  !  ! !"# ! !"#(!!!)
! !"# !!! !"#  (!!!)

.   
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Now sin(φ-α)= sinφ cosα – cosφ sinα and sin(φ+α)= sinφ cosα + cosφ sinα. 

Numerator: 2a cosα sinφ cosφ – 2a cosφ (sinφ cosα – cosφ sinα) = 2a cos2φ sinα. 

Denominator: 2(sinφ cosα + cosφ sinα) (sinφ cosα – cosφ sinα) =                                       
2(sin2φ cos2α – cos2φ sin2α) = 2 (sin2φ cos2α – cos2φ (1 – cos2α)) =                                
2(sin2φ cos2α + cos2φ cos2α – cos2φ) = cos2α – cos2φ. 

Finally AC = !  !"#
!!  !"#$

!"#!!!!"#!!
 =  !  !"#$!"#!!

!"#!!!!
. 

In our case φ > α and cosφ < cosα and AM is negative i.e. in the negative direction of the axis 
AX, hence AC = !  !"#$

!!  !"#
!!

!"#!!

 as in formula (8). 
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